

**Chemistry 2011 (Outside Delhi)****SET I****Time allowed : 3 hours****Maximum marks : 70**

1. Define 'order of a reaction'. [1]

**Answer:** The sum of powers of the concentrations of the reactants in the rate law expression is called the order of a reaction.

2. What is meant by 'shape selective catalysis' ? [1]

**Answer :** Catalysis using selective absorbents like zeolites as catalyst is called shape selective catalysis. In this catalysis small sized molecules are absorbed in the pores and cavities of zeolites.

3. Differentiate between a mineral and an ore. [1]

**Answer :**

| S.No. | Mineral                                                                                | Ore                                                                                     |
|-------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1.    | These are naturally occurring chemical substances obtained from earth crust by mining. | Ores are those minerals from which metals can be extracted profitably and conveniently. |
| 2.    | All minerals are not ores.                                                             | All ores are minerals.                                                                  |

4. What is meant by 'lanthanoid contraction' ? [1]

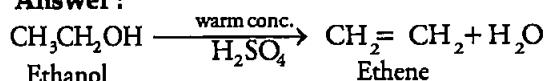
**Answer :** The lanthanoid contraction refers to the

steady and regular decrease in atomic radii along the period from  $\text{La}^{+3}$  to  $\text{Lu}^{+3}$ .

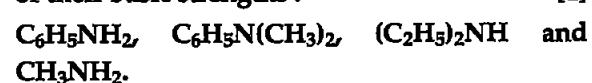
5. Write the IUPAC name of the following compound :



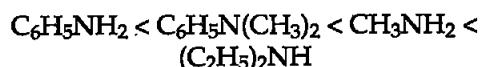
**Answer :** 3-Bromo-1-propene


6. Draw the structure of 4-chloropentan-2-one. [1]




**Answer :**  $\text{CH}_3-\text{CH}-\text{CH}_2-\text{C}(\text{Cl})=\text{O}-\text{CH}_3$

7. How would you convert ethanol to ethene ? [1]


**Answer :**



8. Rearrange the following in an increasing order of their basic strengths : [1]



**Answer :**



**\*\* Answer is not given due to change in present syllabus.**

9. Explain how you can determine the atomic mass of an unknown metal if you know its mass density and the dimensions of unit cell of its crystal.\*\* [2]

10. Calculate the packing efficiency of a metal crystal for a simple cubic lattice.\*\* [2]  
Answer : Edge length =  $a$

11. State the following : [2]

(i) Raoult's law in its general form in reference to solutions.

(ii) Henry's law about partial pressure of a gas in a mixture.

Answer : (i) Raoult's Law : The partial vapour pressure of each component of a solution is equal to the vapour pressure of pure component multiplied by its mole fraction in the solution.

$$P = P_A x_A + P_B x_B$$

Where

$P$  = Total vapour pressure of solution.

$P_A$  and  $P_B$  = vapour pressure of components A and B.

$x_A$  and  $x_B$  = mole fractions of components A and B.

(ii) Henry's Law : It states that the partial pressure of gas in vapour phase ( $P$ ) is directly proportional to mole fraction of gas ( $x$ ) in the solution and is expressed as

$$P = K_H \cdot x$$

where  $K_H$  is Henry constant.

12. What do you understand by the rate law and rate constant of a reaction ? Identify the order of a reaction if the units of its rate constant are : [2]

(i)  $L^{-1} \text{mol s}^{-1}$

(ii)  $L \text{ mol}^{-1} \text{ s}^{-1}$

Answer : Rate law of a chemical reaction is the expression relating the rate of reaction to the concentrations or pressures of various reactants taking part in the reaction.

The rate of reaction at unit concentration of all reactants is known as the rate constant ( $K$ )

(i) Zero order

(ii) Second order

13. The thermal decomposition of  $\text{HCO}_2\text{H}$  is a first order reaction with a rate constant of  $2.4 \times 10^{-3} \text{ s}^{-1}$  at a certain temperature. Calculate how long will it take for three-fourths of initial quantity of  $\text{HCO}_2\text{H}$  to decompose. ( $\log 0.25 = -0.6021$ ) [2]

$$\text{Answer : } t = \frac{2.303}{k} \log \frac{a}{a-x}$$

\*\* Answer is not given due to change in present syllabus.

$$k = 2.4 \times 10^{-3}$$

$$x = \frac{3}{4} = 0.75$$

$$t = \frac{2.303}{2.4 \times 10^{-3}} \log \frac{1}{1-0.75}$$

$$= \frac{2.303}{2.4 \times 10^{-3}} \log 0.25$$

$$= \frac{2.303}{2.4 \times 10^{-3}} \times 0.6020 = 577.6 \text{ sec.}$$

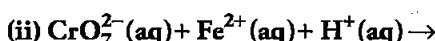
14. Describe the principle controlling each of the following processes : [2]

(i) Vapour phase refining of titanium metal  
(ii) Froth floatation method of concentration of a sulphide ore

Answer : (i) Titanium is converted to its volatile form which is evaporated and then decomposed to give pure titanium.

(ii) The ore particles get adsorbed on oil droplets and come to the surface where they can be collected as froth gangue is wetted by water and gets settle down.

15. How would you account for the following : [2]


(i)  $\text{Cr}^{2+}$  is reducing in nature while with the same  $d$ -orbital configuration ( $d^4$ )  $\text{Mn}^{3+}$  is an oxidizing agent.

(ii) In a transition series of metals, the metal which exhibits the greatest number of oxidation states occurs in the middle of the series.

Answer : (i)  $\text{Cr}^{2+}$  has configuration  $d^4$  which easily changes to  $d^3$  due to stable half filled  $t^2g$  orbitals. Therefore,  $\text{Cr}^{2+}$  is reducing agent and  $\text{Mn}^{3+}$  easily changes to  $\text{Mn}^{2+}$  and acts as an oxidizing agent.

(ii) Due to presence of more unpaired electrons and more number of partially filled orbitals in the middle of a transition series, these metals exhibit the greatest number of oxidation states.

16. Complete the following chemical equations : [2]



OR

State reasons for the following :

(i)  $\text{Cu}^{+}$  ion is not stable in an aqueous solution.



towards cathode and negatively charged ions move towards anode. Then they get coagulate. This is known as Electrophoresis.

(ii) When a beam of strong light is passed through solution, light gets scattered by the colloidal particles and path of light becomes visible. This is known as Tyndall effect.

(iii) When  $\text{NaCl}$  is added to ferric hydroxide sol then a negatively charged solution is obtained with absorption of  $\text{OH}^-$  ion.

21. How would you account for the following : [3]

(i)  $\text{H}_2\text{S}$  is more acidic than  $\text{H}_2\text{O}$ .

(ii) The N–O bond in  $\text{NO}_2^-$  is shorter than the N–O bond in  $\text{NO}_3^-$ .

(iii) Both  $\text{O}_2$  and  $\text{F}_2$  stabilize high oxidation states but the ability of oxygen to stabilize the higher oxidation state exceeds that of fluorine.

Answer : (i) Size of sulphur is larger than oxygen due to which S–H bond length increases and hence the bond dissociation energy of S–H is less than O–H. Therefore S–H easily loses  $\text{H}^+$  and is more acidic than  $\text{H}_2\text{O}$ .

(ii) Due to tendency of nitrogen to form  $p\pi-p\pi$  multiple bonds, there is a difference in N–O bond lengths of  $\text{NO}_2$  and  $\text{NO}_3^-$ .

(iii) Due to the property of oxygen to form double bonds with the metal atoms, oxygen stabilizes the higher oxidation state even more than fluorine.

22. Explain the following terms giving a suitable example in each case : [3]

(i) Ambident ligand

(ii) Denticity of a ligand

(iii) Crystal field splitting in an octahedral field

Answer : (i) Ligands which can ligate to the central atom in two places ligands such as  $\text{SCN}^-$  which can attach at either S atom or N atom are called ambidentate ligand.

(ii) The number of donor atoms of a ligand when bound with central atom in a coordination complex is called its denticity.

(iii) The splitting of five degenerate  $d$ -orbitals in two sets, one with three orbitals and another with two orbitals is known as crystal field splitting.

23. Rearrange the compounds of each of the following sets in order of reactivity towards  $\text{S}_{\text{N}}2$  displacement : [3]

(i) 2-Bromo-2-methylbutane,

1-Bromopentane, 2-Bromo-pentane

(ii) 1-Bromo-3-methylbutane, 2-Bromo-2-methylbutane, 2-Bromo-3-methylbutane

(iii) 1-Bromobutane, 1-Bromo-2,2-

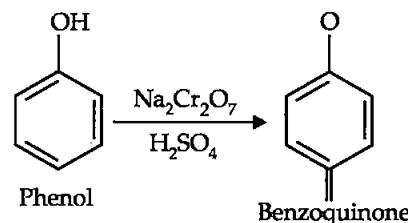
dimethylpropane, 1- Bromo-2-methylbutane.

Answer : (i) 1-bromopentane > 2-bromopentane > 2-bromo-2-methylbutane.

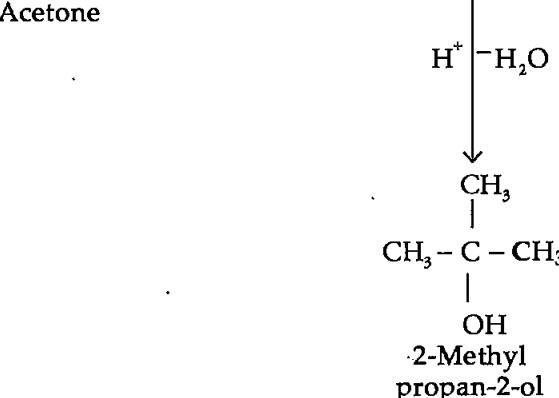
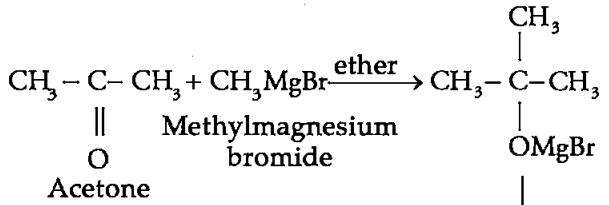
(ii) 1-bromo-3 methylbutane > 2-bromo-3-methylbutane > 2-bromo-2-methyl butane.

(iii) 1-bromobutane > 1-bromo-3-methylbutane > 1-bromo-2, 2-dimethylpropane.

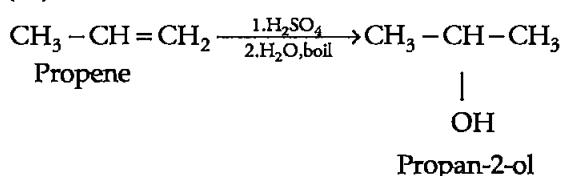
24. How would you obtain the following : [3]


(i) Benzoquinone from phenol

(ii) 2-Methylpropan-2-ol from methylmagnesium bromide



(iii) Propan-2-ol from propene

Answer :


(i)



(ii)



(iii)



25. State reasons for the following : [3]

(i)  $pK_b$  value for aniline is more than that for methylamine.

(ii) Ethylamine is soluble in water whereas aniline is not soluble in water.

(iii) Primary amines have higher boiling points than tertiary amines.

**Answer :** (i) Higher value of  $pK_b$  means lower basicity, therefore, aniline is less basic than methylamine because in aniline the lone pair of electrons on N atom gets delocalized over the benzene ring and remains unavailable for protonation due to resonance but this is absent in methylamine.

(ii) Ethylamine forms H-bonds with water therefore, it is soluble in water but aniline does not form H-bonds with water due to its larger hydrocarbon part and is insoluble in water.

(iii) In primary amines, two H-atoms are attached to N-atom and they undergo intermolecular H-bonding, but tertiary amines due to the absence of H-atom on N-atom do not undergo H-bonding. Therefore, primary amines have higher boiling point than tertiary amines.

26. Draw the structures of the monomers of the following polymers : [3]

(i) Polythene      (ii) PVC      (iii) Teflon

**Answer :** (i) Ethene  $\text{—CH}_2=\text{CH}_2\text{—}$

(ii) Vinyl chloride  $\text{—CH}_2=\text{CHCl}\text{—}$

(iii) Tetrafluoroethylene  $\text{—CF}_2=\text{CF}_2\text{—}$

27. What are the following substances ? Give one example of each. [3]

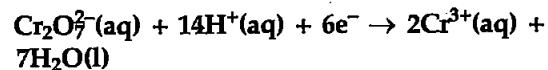
(i) Food preservatives

(ii) Synthetic detergents

(iii) Antacids

**Answer :** (i) Chemicals added to food to prevent its spoilage by killing or preventing the growth of microorganisms like bacteria, yeasts and moulds.

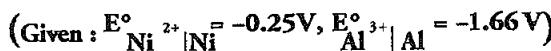
e.g., sodium benzoate.


(ii) Synthetic detergents are sodium or potassium salts of long chain sulphonic acids. They don't precipitate in hard water. e.g., Sodium laurylsulphate.

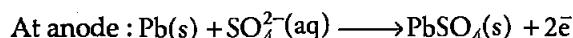
(iii) Antacids are chemicals consumed to get relief from acidity in the stomach by neutralizing excess acid. e.g., milk of magnesia.

28. (a) What type of a battery is lead storage battery ? Write the anode and cathode reactions and the overall cell reaction occurring in the operation of a lead storage battery. [5]

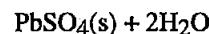
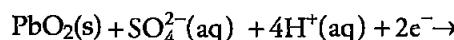
(b) Calculate the potential for half-cell containing


0.10 M  $\text{K}_2\text{Cr}_2\text{O}_7$  (aq), 0.20 M  $\text{Cr}^{3+}$  (aq) and  $1.0 \times 10^{-4}$  M  $\text{H}^+$  (aq). The half-cell reaction is and the standard electrode potential is given as  $E^\circ = 1.33$  V.

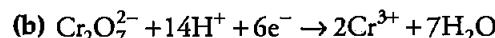
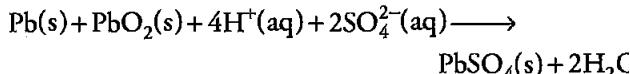



**OR**

(a) How many moles of mercury will be produced by electrolyzing 1.0 M  $\text{Hg}(\text{NO}_3)_2$  solution with a current of 2.00 A for 3 hours ? [ $\text{Hg}(\text{NO}_3)_2 = 200.6 \text{ g mol}^{-1}$ ]



(b) A voltaic cell is set up at 25°C with the following half-cells  $\text{Al}^{3+}$  (0.001 M) and  $\text{Ni}^{2+}$  (0.50 M). Write an equation for the reaction that occurs when the cell generates an electric current and determine the cell potential.





**Answer :** (a) Lead storage battery is a secondary cell (rechargeable). The electrode reaction is as follows :



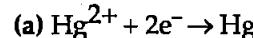
At cathode :



**Overall reaction :**



0.1M       $10^{-4}$  M      0.2 M


$$E = E^\circ - \frac{0.059}{6} \log \frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}][\text{H}^+]^{14}}$$

$$E = 1.33 - \frac{0.059}{6} \log \frac{(0.20)^2}{(0.10)(10^{-4})^{14}}$$

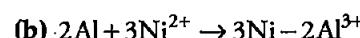
$$E = 1.33 \text{ V} - 0.55 \text{ V}$$

$$E = 0.78 \text{ V}$$

**OR**



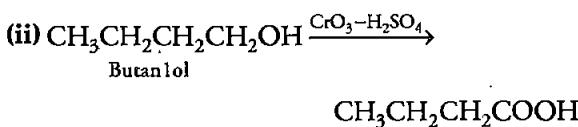
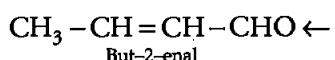
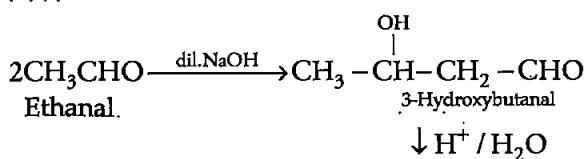
Quantity of electricity (Q) =  $I \times t = 2 \times 3 \times 60 \times 60 = 21600 \text{ C}$


2F ( $2 \times 96500 \text{ C}$ ) deposits Hg = 1 mole

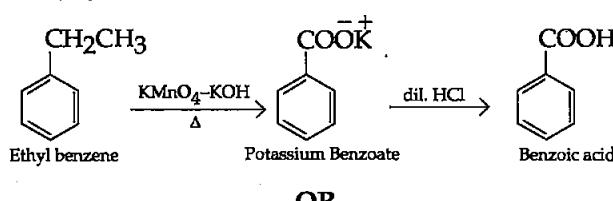
$$\therefore 1\text{C deposits e Hg} = \frac{1}{2 \times 96500}$$

$$\therefore 21600 \text{ C deposits e Hg}$$

$$= \frac{1}{2 \times 96500} \times 21600$$

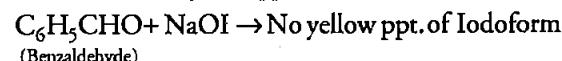
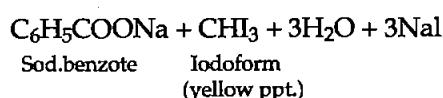
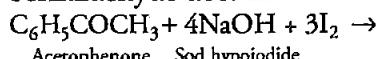



$$= 0.1119 \text{ mole}$$



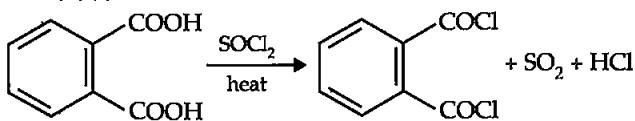

$$E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}}$$



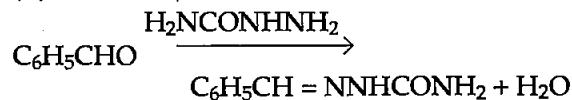
(b)(i)

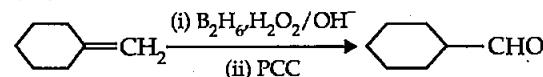

(iii)




(a) (i) Benzoic acid gives  $\text{CO}_2$  gas on reacting with  $\text{NaHCO}_3$  but ethyl benzoate does not  
(ii) Acetophenone gives iodoform test but


benzaldehyde does not




(b)(i)



(ii)



(iii)



••

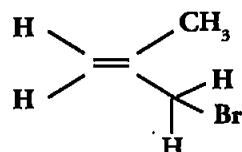
## Chemistry 2011 (Outside Delhi)

## SET II

Time allowed : 3 hours

Maximum marks : 70

Note : Except for the following questions, all the remaining questions have been asked in previous set.

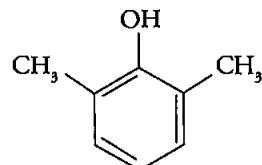

2. What are lyophobic colloids ? Given one example for them. [1]

**Answer :** Colloids in which the colloidal particles have no affinity for the dispersion medium and they do not form colloidal solution are lyophobic colloids, like,  $\text{Al}(\text{OH})_3$  and  $\text{As}_2\text{S}_3$  sols.

3. Why is it that only sulphide ores are concentrated by 'froth floatation process' ? [1]

**Answer :** Due to the affinity of heavy oil droplets to adsorb sulphide particles. The ore particles come on the surface as froth, gangue particles are wetted by water and get settle down.

5. Write the IUPAC name of the following compound: [1]




**Answer :** 3-Bromo-2-methyl prop-1-ene

\* Answer is not given due to change in present syllabus.

6. Draw the structure of 2, 6-Dimethylphenol. [1]

**Answer :**



9. Define the following terms in relation to crystalline solids :\*\* [2]

(i) Unit Cell

(ii) Coordination number

12. A reaction is of second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is reduced to half ? What is the unit of rate constant for such a reaction ? [2]

**Answer :** Rate =  $K[\text{A}]^2 = k\alpha^2$

If  $[\text{A}] = \frac{1}{2} \alpha$ , then Rate =  $K \left( \frac{\alpha}{2} \right)^2 = \frac{1}{4} k\alpha^2$

$\therefore$  Rate =  $\frac{1}{4}$  of original rate

The unit of rate constant is  $\text{L mol}^{-1} \text{s}^{-1}$

14. Describe the principle controlling each of the following processes : [2]

(i) Zone refining of metals

(ii) Electrolytic refining of metals

**Answer :** (i) **Zone refining of Metals :** It is based on the principle that impurities are more soluble in molten state of metal than in the solid state.

(ii) **Electrolytic refining :** Impure metal is made of anode, thin sheet of pure metal is made of cathode and a salt of the metal is used as an electrolyte. On passing current, metal from anode goes into the solution and ions in the solution reduce on cathode leading to deposition of pure metal.

15. Explain giving a suitable reason for each of the following : [2]

(i) Transition metals and their compounds are generally found to be good catalysts.

(ii) Metal-metal bonding is more frequent for the 4d and the 5d series of transition metals than that for the 3d series.

**Answer :** (i) Due to presence of vacant orbitals and tendency to form large number of oxidation states, transition metals have a high tendency to form complexes and hence acts as a catalysts.

(ii) In transition metals of 4d and 5d series the 4d and 5d electrons are at greater distance from the nucleus therefore they are less tightly held to the atom by the nucleus and hence contribute more to metallic bonding as compared to transition metals of 3d series.

19. What mass of NaCl must be dissolved in 65.0 g of water to lower the freezing point of water by 7.50°C? The freezing point depression constant ( $K_f$ ) for water is 1.86°C/m. Assume Van't Hoff factor for NaCl is 1.87. (Molar mass of NaCl = 58.5 g) [3]

**Answer :** Given,  $M_2 = 58.5 \text{ g mol}^{-1}$

$$W_1 = 65 \text{ g}, \Delta T_f = 7.50^\circ\text{C}$$

$$K_f = 1.86 \text{ K kg mol}^{-1}$$

$$i = 1.87$$

$$\Delta T_f = \frac{i K_f \times W_2 \times 1000}{W_1 \times M_2}$$

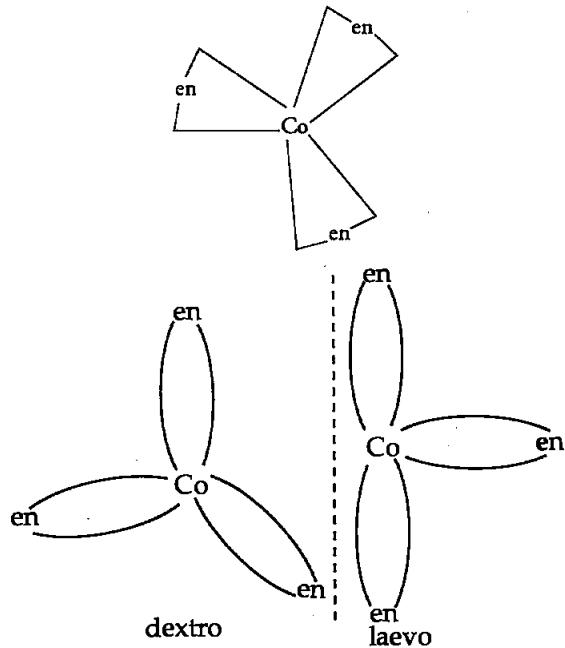
$$W_2 = \frac{\Delta T_f \cdot W_1 \times M_2}{i \times K_f \times 1000} = \frac{7.5 \times 65 \times 58.5}{1.87 \times 1.86 \times 1000}$$

$$= \frac{28518.75}{3478.2} = 8.1999$$

∴ Mass of NaCl to be dissolved  $W_2 = 8.1999 \text{ g} = 8.209 \text{ g}$

22. Write the structures and names of all the stereoisomers of the following compounds : [3]

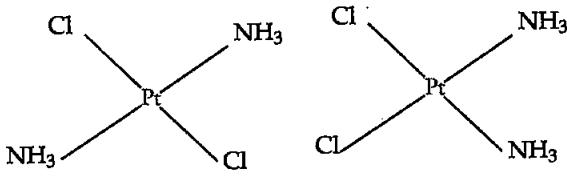
(i)  $[\text{Co}(\text{en})_3]\text{Cl}_3$  (ii)  $[\text{Pt}(\text{NH}_3)_2\text{Cl}_2]$


(iii)  $[\text{Fe}(\text{NH}_3)_4\text{Cl}_2]\text{Cl}$

**Answer :** (i) Stereoisomerism is of two types :

(1) Geometrical isomerism

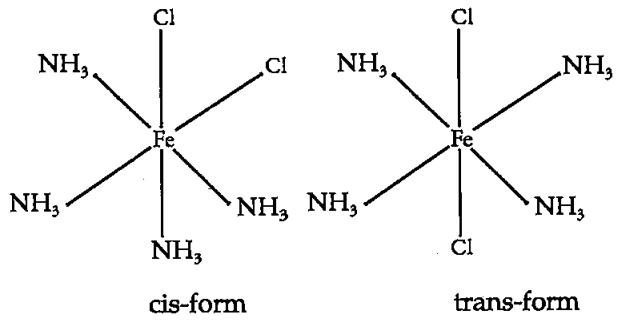
(2) Optical isomerism


$[\text{Co}(\text{en})_3]\text{Cl}_3$  : Tris (ethylenediamine) cobalt (III) chloride



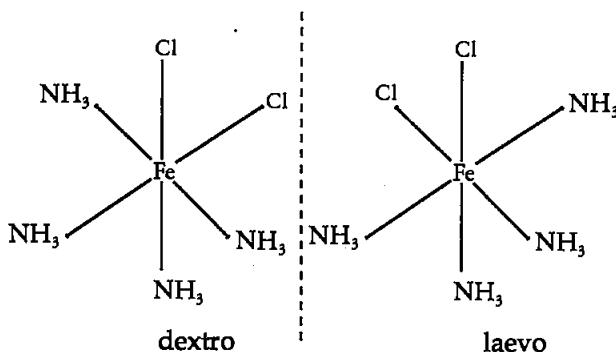
(ii)  $[\text{Pt}(\text{NH}_3)_2\text{Cl}_2]$  Diammine

dichloridoplatinum(II)


Geometrical isomers



cis-form


trans-form

(iii)  $[\text{Fe}(\text{NH}_3)_4\text{Cl}_2]\text{Cl}$  Tetraammine dichloride iron (III) chloride



Optical isomer

Only cis form



27. (a) Differentiate between a disinfectant and an antiseptic. Give one example of each.  
 (b) What is tincture of iodine and what is it used for ? [3]

**Answer : (a)**

|    | Disinfectant                                    | Antiseptic                                                                         |
|----|-------------------------------------------------|------------------------------------------------------------------------------------|
| 1. | Chemical substances used to kill microorganisms | Chemical substances which prevent growth of microorganisms and may even kill them. |
| 2. | They are applied on non-living objects          | They are safe to apply on living tissues.                                          |
| 3. | They are used in drains, toilets, floors etc.   | They are used on wounds, cut, ulcers etc.                                          |
| 4. | Example : Phenol (1%)                           | Example : Soframycin                                                               |

**Answer : (b)** 2-3% solution of iodine in alcohol and water is called tincture iodine and is widely used as an antiseptic.

••

## Chemistry 2011 (Outside Delhi)

## SET III

Time allowed : 3 hours

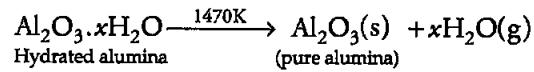
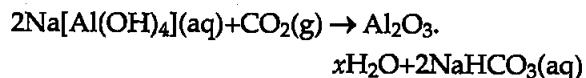
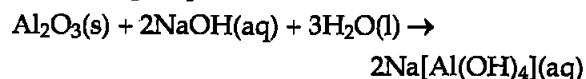
Maximum marks : 70

**Note :** Except for the following questions, all the remaining questions have been asked in previous sets.

1. Define 'activation energy' of a reaction. [1]  
 Answer : Activation energy is the minimum energy that is to be provided to the reactants for the reaction to take place.

2. What is meant by 'reverse osmosis' ? [1]  
 Answer : When a pressure higher than osmotic pressure is applied the solvent will flow from the solution into the pure solvent through the semipermeable membrane, called reverse osmosis.

3. What type of ores can be concentrated by magnetic separation method ? [1]  
 Answer : Ores with different magnetic properties and impurities which are magnetic in nature can be concentrated by magnetic separation method.  
 e.g. Chromite ( $\text{FeO} \cdot \text{Cr}_2\text{O}_3$ ), Magnetite ( $\text{Fe}_3\text{O}_4$ )




14. Describe the principle controlling each of the following processes : [2]

(i) Preparation of cast iron from pig iron.  
 (ii) Preparation of pure alumina ( $\text{Al}_2\text{O}_3$ ) from bauxite ore.

Answer : (i) Preparation of cast iron from pig iron : The iron obtained from blast furnace is called pig iron. Cast iron is prepared by melting pig iron with scrap iron and coke using hot air blast. It has slightly lower carbon content (about 3%). It is extremely hard and brittle.

(ii) Preparation of pure alumina from bauxite

**ore :** The principal ore of aluminium is bauxite  $\text{Al}_2\text{O}_3 \cdot x\text{H}_2\text{O}$ . Bauxite is concentrated by digesting the powdered ore with concentrated solution of  $\text{NaOH}$  at 473-523K. The  $\text{Al}_2\text{O}_3$  is leached out as sodium aluminate. The sodium aluminate is neutralized by passing  $\text{CO}_2$  gas and hydrated  $\text{Al}_2\text{O}_3$  is precipitated which is filtered, dried and heated to give pure  $\text{Al}_2\text{O}_3$ .



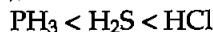
15. Explain giving reasons : [2]  
 (i) Transition metals and their compounds generally exhibit a paramagnetic behaviour.  
 (ii) The chemistry of actinoids is not so smooth as that of lanthanoids.

Answer : (i) Transition metals and their compounds exhibit a paramagnetic behaviour due to presence of unpaired electrons in the Penultimate shell of  $d$ -orbital.

(ii) Lanthanoids show limited number of oxidation states, +2, +3, +4 because of large energy gap between  $4f$  and  $5d$  subshells. Actinoids show a number of oxidation states +4, +5, +6, +7 due to small energy difference between  $5f$ ,  $6d$  and  $7s$  subshells.

18. Write such reactions and facts about glucose which cannot be explained by its open chain structure. [2]

Answer : Limitations of open chain structure of glucose :


(i) Glucose does not form  $\text{NaHSO}_3$  as addition product.  
 (ii) Glucose penta-acetate does not react with  $\text{NH}_2\text{OH}$  due to absence of aldehyde group.

21. How would you account for the following : [3]

(i)  $\text{NF}_3$  is an exothermic compound but  $\text{NCl}_3$  is not.\*\*  
 (ii) The acidic strength of compounds increase in the order :



(ii) As electronegativity increases in the same period from left to right so their electronegativity is in the increasing order  $\text{P} < \text{S} < \text{Cl}$ . Therefore, acidic strength increases in the order,



(iii)  $\text{SF}_6$  is protected by six F atoms and hence does not allow to attack on sulphur atom.

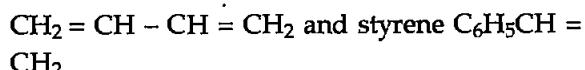
22. Write the state of hybridization, the shape and the magnetic behaviour of the following complex entities : [3]



Answer : (i)  $d^2sp^3$ , octahedral, diamagnetic

(ii)  $d^2sp^3$ , octahedral, diamagnetic

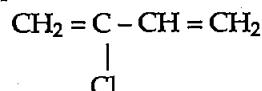
(iii)  $dsp^2$ , square planar, diamagnetic


26. Write the names and structures of the monomers of the following polymers : [3]

(i) Buna-S

(ii) Dacron

(iii) Neoprene


Answer : (i) Buna-S : 1,3-Butadiene



(ii) Dacron : Ethylene glycol  $\text{HOCH}_2\text{CH}_2\text{OH}$ , Terephthalic acid



(iii) Neoprene : Chloroprene



••

## Chemistry 2011 (Delhi)

SET I

Time allowed : 3 hours

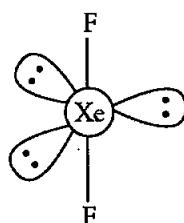
Maximum marks : 70

1. 'Crystalline solids are anisotropic in nature'. What does this statement mean ?\*\* [1]

2. Express the relation between conductivity and molar conductivity of a solution held in a cell. [1]

Answer : The molar conductivity of a solution is related to conductivity of that solution as :

$$\Lambda_m = \frac{K}{C} = \frac{\text{Conductivity}}{\text{Concentration}}$$

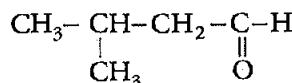

3. Define 'Electrophoresis'. [1]

Answer : Electrophoresis is the phenomenon of movement of colloidal particles under the applied electric field.

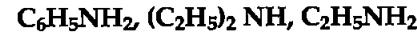
4. What is the structure of  $\text{XeF}_2$  molecule ? [1]

Answer :

\*\* Answer is not given due to the change in present syllabus.




5. Write the IUPAC name of the following compound :  $(\text{CH}_3)_3\text{CCH}_2\text{Br}$  [1]

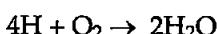
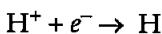
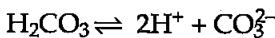
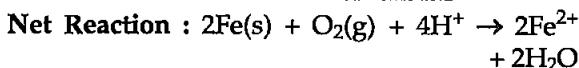
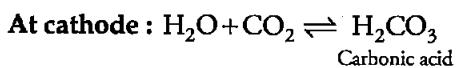
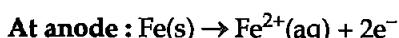

Answer : 1-bromo-2, 2-dimethylpropane

6. Draw the structure of 3-methylbutanal. [1]

Answer :

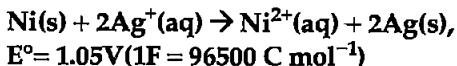


7. Arrange the following compounds in an increasing order of their solubility in water : [1]


Answer :  $\text{C}_6\text{H}_5\text{NH}_2 < (\text{C}_2\text{H}_5)_2\text{NH} < \text{C}_2\text{H}_5\text{NH}_2$

8. Define Biodegradable polymers. [1]  
**Answer :** Bio-degradable polymers are natural polymers that disintegrated themselves over a period of time by enzymatic hydrolysis. e.g., starch, cellulose, etc.


9. The chemistry of corrosion of iron is essentially an electro-chemical phenomenon. Explain the reactions occurring during the corrosion of iron in the atmosphere. [2]

**Answer :** According to electrochemical theory of rusting, the impure iron surface behaves like small electrochemical cell in the presence of water containing dissolved oxygen or carbon dioxide. In this cell pure iron acts as an anode and impure iron surface acts as cathode. Moisture having dissolved  $\text{CO}_2$  or  $\text{O}_2$  acts as an electrolyte. The reactions at cathode and anode are as follows :



10. Determine the values of equilibrium constant ( $K_e$ ) and  $\Delta G^\circ$  and for the following reaction :

[2]



**Answer :** According to the formula

$$\Delta G^\circ = -nFE^\circ = -2 \times 96500 \times 1.05$$

$$\text{or } \Delta G^\circ = -202650 \text{ J mol}^{-1} = -202.65 \text{ KJ mol}^{-1}$$

$$\text{Now } \Delta G^\circ = -202.650 \text{ J mol}^{-1} = 1$$

$$R = 8.314 \text{ J/mol}, T = 298 \text{ K}$$

$$\log K = \frac{\Delta G^\circ}{2.303RT} \Rightarrow \log K = \frac{-202650}{2.303 \times 8.314 \times 298}$$

$$\log K = \frac{-202650}{5705.84831} = 35.52$$

$$K = \text{Antilog of } 35.52 \therefore K = 0.35 \times 10^7$$

11. Distinguish between 'rate expression' and 'rate constant' of a reaction. [2]

**Answer :** Rate constant is the rate of reaction when the concentration of each reactant is taken as unity.

Rate expression expresses the rate of reaction in terms of molar concentrations of the reactants with each term raised to their power, which

may or may not be same as the stoichiometric coefficient of that reactant in the balanced chemical equation.

12. Give reason for : [2]

(i) The N-O bond in  $\text{NO}_2$  is shorter than the N-O bond in  $\text{NO}_3^-$ \*\*

(ii)  $\text{SF}_6$  is kinetically an inert substance.

OR

State reasons for each of the following :

(i) All the P-Cl bonds in  $\text{PCl}_5$  molecules are not equivalent.\*\*

(ii) Sulphur has greater tendency for catenation than oxygen.

(ii)  $\text{SF}_6$  is kinetically inert due to high oxidizing power and electronegativity of fluorine atom which causes steric hindrance and it unables to further react with any other atom.

OR

(ii) Sulphur has a much greater tendency for catenation than oxygen because of its bigger size and low electronegativity due to which the S-S bond is stronger than O-O bond and there is more interelectronic repulsion in O-O than in S-S bond.

13. Assign reasons for the following : [2]

(i) Copper (I) ion is not known in aqueous solution.

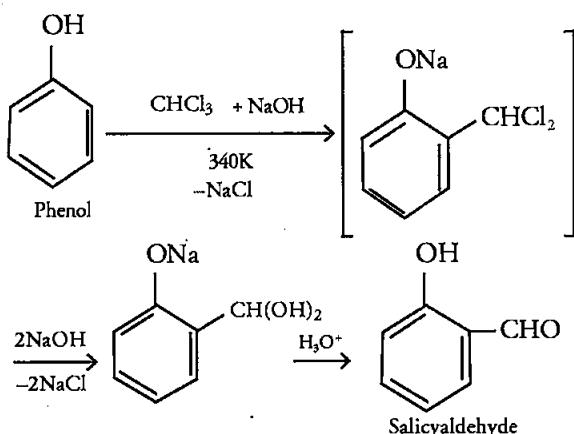
(ii) Actinoids exhibit greater range of oxidation states than lanthanoids.

**Answer :** (i) In aqueous solution  $\text{Cu}^+$  undergoes disproportionation to form a more stable  $\text{Cu}^{2+}$  ion.

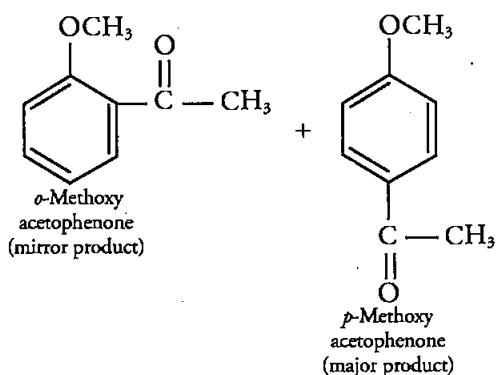
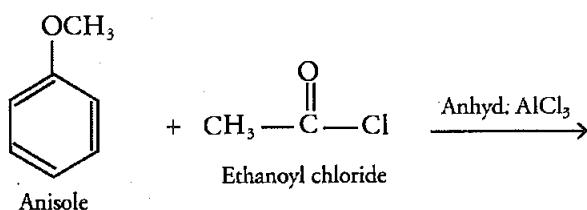


The higher stability of  $\text{Cu}^{2+}$  ion in aqueous solution may be attributed to its greater negative  $\Delta_{\text{hyd}}\text{H}$  than that of  $\text{Cu}^+$  ion. It compensates the second ionisation enthalpy of Cu involved in the formation of  $\text{Cu}^{2+}$  ions.

(ii) Actinoids exhibit greater range of oxidation states than lanthanoids. This is because there is less energy difference between  $5f$  and  $6d$  orbitals belonging to actinoids than the energy difference between  $4f$  and  $5d$  orbitals in case of lanthanoids.


14. Explain the following giving one example for each : [2]

(i) Reimer-Tieman reaction.



(ii) Friedel Craft's acetylation of anisole.

**Answer :** (i) When phenol is treated with chloroform in presence of aqueous  $\text{NaOH}$  at 340 K followed by hydrolysis gives salicylaldehyde.

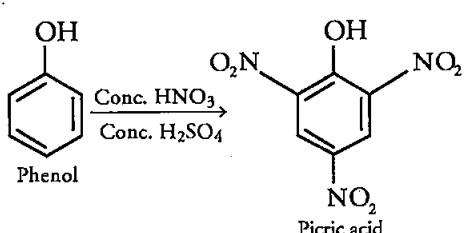
\* Answer is not given due to the change in present syllabus.



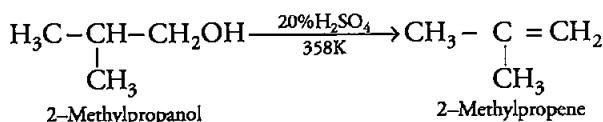
(ii) When anisole is treated with acetylchloride in presence of anhydrous  $\text{AlCl}_3$ , 2-methoxy acetophenone is formed.



15. How would you obtain :

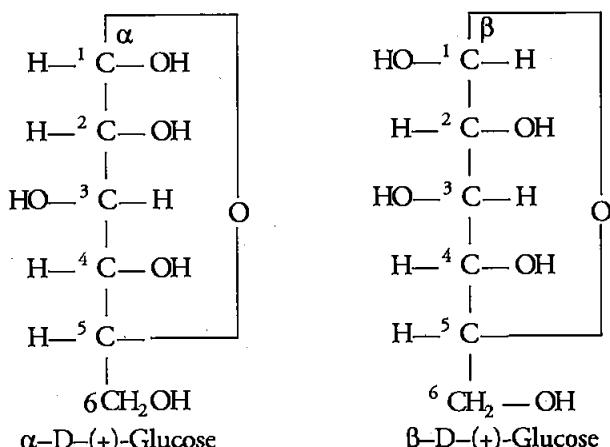

[2]

(i) Picric acid (2, 4, 6-Trinitrophenol) from phenol.


(ii) 2-Methylpropene from 2-methylpropanol ?

Answer :

(i)




(ii)



16. What is essentially the difference between  $\alpha$ -form of glucose and  $\beta$ -form of glucose ? Explain. [2]

Answer : In  $\alpha$ -form of glucose OH group lies at C1 towards right but in  $\beta$ -form of glucose it is towards left. This is because OH group at C1 in glucose is chiral.



17. Describe what you understand by primary structure and secondary structure of proteins.[2]

Answer : Primary structure of proteins refer to the sequence in which amino acids are joined together by peptide linkage. The sequence of amino acids in primary structure is very specific. Any change in the sequence of amino acids creates a different protein with different biological activity.

Secondary structure of proteins refers to the conformation which arises due to the coiling of polypeptide chain due to intramolecular hydrogen bonding between carbonyl ( $\text{C=O}$ ) and  $-\text{NH}$  groups. Depending upon the size of  $-\text{R}$  group, there are two secondary structures of protein, i.e.,  $\alpha$ -Helix and  $\beta$ -Pleated sheet like structure.

18. Mention two important uses of the following[2]

(i) Bakelite (ii) Nylon-6

Answer : Bakelite : It is used in the manufacture of electrical switches, protective coatings, barrels, etc.

Nylon-6 : It is used in making Fabrics, tyre cords, mountaineering ropes etc.

19. Silver crystallizes in face-centered cubic unit cell. Each side of this unit cell has a length of 400 pm. Calculate the radius of the silver atom. (Assume the atoms just touch each other on the

diagonal across the face of the unit cell. That is each face atom is touching the four corner atoms).\*\* [3]

20. Nitrogen pentoxide decomposes according to equation : [3]



The first order reaction was allowed to proceed at 40°C and the data below were collected :

| $[\text{N}_2\text{O}_5](\text{M})$ | Time (min) |
|------------------------------------|------------|
| 0.400                              | 0.00       |
| 0.289                              | 20.0       |
| 0.209                              | 40.0       |
| 0.151                              | 60.0       |
| 0.109                              | 80.0       |

(i) Calculate the rate constant. Include units with your answer.  
(ii) What will be the concentration of  $\text{N}_2\text{O}_5$  after 100 minutes ?  
(iii) Calculate the initial rate of reaction.

Answer : (i) We know that

$$k = \frac{2.303}{t} \log \frac{[\text{A}_0]}{[\text{A}]}$$

Substituting the values we get,

$$k = \frac{2.303}{20} \log \frac{0.400}{0.289}$$

$$k = \frac{2.303}{20} \log 1.3840$$

or  $k = 0.11515 \log 1.3840$

$\therefore K = 0.0163 \text{ min}^{-1}$

(ii) Using the formula,  $k = \frac{2.303}{t} \log \frac{[\text{A}_0]}{[\text{A}]}$

or  $\log \frac{0.400}{[\text{A}]} = \frac{0.0163 \times 100}{2.303}$

or  $\log \frac{0.400}{[\text{A}]} = 7.0777$

$\therefore [\text{A}] = 0.078\text{M}$

$$\begin{aligned} \text{(iii) Initial rate, } R &= k[\text{N}_2\text{O}_5] \\ &= 0.0163 \times 0.400 \\ &= 0.00652 \text{ M min}^{-1} \end{aligned}$$

21. Explain how the phenomenon of adsorption finds application in each of the following processes : [3]

(i) Production of vacuum

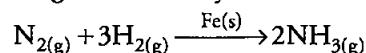
\* Answer is not given due to change in present syllabus.

(ii) Heterogeneous catalysis

(iii) Froth Floatation Process

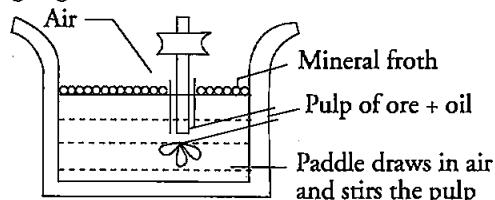
OR

Define each of the following terms :


(i) Micelles

(ii) Peptization

(iii) Desorption


Answer : (i) In vacuum flask activated charcoal is placed between the walls of the flask so that any gas which enters into annular space either due to glass imperfection or diffusion through glass is adsorbed and create a vacuum.

(ii) If the catalysts and reactants are present in different phase, the process of catalysis is called as heterogenous catalysis. For example, manufacture of  $\text{NH}_3$  from  $\text{N}_2$  and  $\text{H}_2$  by Haber's process using iron as catalyst



In this process, the reactants are in gaseous phase whereas catalyst is in solid phase.

(iii) This method is used for removing gangue from sulphide ores. In this powdered ore is mixed with collectors (e.g., pine oil, fatty acids etc.) and froth stabilizers (e.g., cresols, aniline) which enhance non-wettability of the mineral particles and froth stabilisation respectively. As a result of which ore comes with froth and gangue remains in the solution.

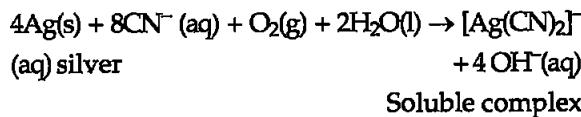


OR

(i) When soaps and detergents are added to water, a cluster of charged particle is formed by the aggregation of variety of molecules. Thus formed is called micelle.

(ii) The process of converting a fresh precipitate into colloidal particles by shaking it with the dispersion medium in the presence of a small amount of a suitable electrolyte is called peptization.

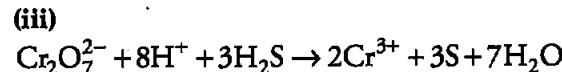
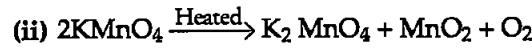
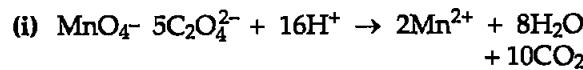
(iii) The process of removal of adsorbed substance from the surface of a solid or a liquid by heating or by reducing pressure is called desorption.


22. Describe the principle behind each of the following processes : [3]

- (i) Vapour phase refining of a metal.
- (ii) Electrolytic refining of a metal
- (iii) Recovery of silver after silver ore was leached with NaCN.

**Answer :** (i) **Vapour Phase Refining :** The impure metal is first converted to its unstable volatile compound which is evaporated and then decomposed by heating at higher temperature to give pure metal, leaving behind the impurities.

(ii) In this method impure metal is made anode and a thin sheet of pure metal is made cathode, and are put in a suitable electrolyte containing soluble salt of same metal. On passing current the more basic metal remains in the solution and the less basic one goes to the anode and gets deposited as anode mud.




(iii) NaCN acts as a leaching agent or oxidizing agent, thus oxidizes Ag to  $\text{Ag}^+$  which then combines with  $\text{CN}^-$  ions to form respective soluble complex.



23. Complete the following chemical equations : [3]

- (i)  $\text{MnO}_4^- + \text{C}_2\text{O}_4^{2-} + \text{H}^+ \rightarrow$
- (ii)  $\text{KMnO}_4 \xrightarrow{\text{Heated}}$
- (iii)  $\text{Cr}_2\text{O}_7^{2-} + \text{H}_2\text{S} + \text{H}^+ \rightarrow$

**Answer :**



24. Write the name, stereochemistry and magnetic behaviour of the following : [3]

(At. Nos. Mn = 25, Co = 27, Ni = 28)

- (i)  $\text{K}_4[\text{Mn}(\text{CN})_6]$
- (ii)  $[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2$
- (iii)  $\text{K}_2[\text{Ni}(\text{CN})_4]$

**Answer :** (i) Potassiumhexacyanomanganate(II)

**Shape :** Octahedral

**Magnetic Behaviour :** Paramagnetic (one unpaired electron)

**Hybridization :**  $d^2sp^3$

(ii) Pentaamminechloridocobalt (III) chloride

**Shape :** Octahedral

**Hybridization :**  $d^2sp^3$

**Magnetic Behaviour :** Dimagnetic (no unpaired electrons)

(iii) Potassiumtetracyanonicklate(II)

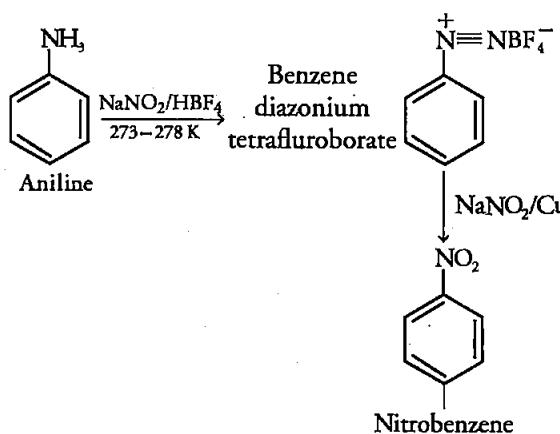
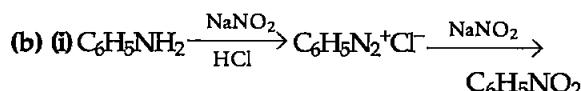
**Shape :** Square planar

**Hybridization :**  $dsp^2$

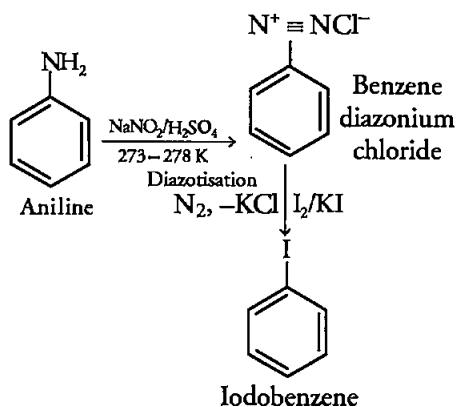
**Magnetic Behaviour :** Dimagnetic (no unpaired electrons)

25. Answer the following : [3]

- (i) Haloalkanes easily dissolves in organic solvents, why ?
- (ii) What is known as a racemic mixture ? Give an example.
- (iii) Of the two bromoderivatives,  $\text{C}_6\text{H}_5\text{CH}(\text{CH}_3)\text{Br}$  and  $\text{C}_6\text{H}_5\text{CH}(\text{C}_6\text{H}_5)\text{Br}$ , which one is more reactive in  $\text{S}_{\text{N}}1$  substitution reaction and why ?



**Answer :** (i) Haloalkanes dissolve in organic solvents because the new intermolecular attraction between haloalkanes and organic solvent molecules have the same strength as the one being broken in the separate haloalkanes and solvent molecules.

(ii) Racemic mixture is an equimolar mixture of two enantiomers and is hence optically inactive. e.g. ( $\pm$  butan-2-ol)


(iii) The carbocation intermediate derived from  $\text{C}_6\text{H}_5\text{CH}(\text{C}_6\text{H}_5)\text{Br}$  i.e.  $\text{C}_6\text{H}_5^+\text{CH}(\text{C}_6\text{H}_5)_2$  is more stable as compared to the carbocation  $\text{C}_6\text{H}_5^+\text{CHCH}_3$  obtained from  $\text{C}_6\text{H}_5\text{CH}(\text{CH}_3)\text{Br}$  because it is stabilized by two phenyl groups due to resonance.

26. (a) Explain why an alkylamine is more basic than ammonia ? [3]  
 (b) How would you convert :  
 (i) Aniline to nitrobenzene  
 (ii) Aniline to iodobenzene

**Answer :** (a) Alkyl groups are electron donating groups and increases the electron density on nitrogen in alkylamine making them more basic than ammonia.



(ii)



27. Describe the following giving one example for each : [3]

(i) Detergents      (ii) Food preservatives  
 (iii) Antacids

**Answer :** (i) Detergents are soluble salts of sodium potassium sulphonic acids unlike soaps they are non-biodegradable but they can be conveniently used both with soft and hard water. e.g. Sodium alkylbenzene sulphonate.

(ii) Food preservatives are chemicals used to preserve food by preventing microbial growth

e.g. Sodium benzoate, Table salt, etc.

(iii) The substances which are taken to neutralize the excess acid and maintaining the pH to an appropriate level in stomach are called antacids. There are two types of antacids systemic antacids, e.g.,  $\text{NaHCO}_3$  and non-systemic e.g. Milk of magnesia.

28. (a) Differentiate between molality and molarity of a solution. How does a change in temperature influence their values ? [5]  
 (b) Calculate the freezing point of an aqueous solution containing 10.50 g of  $\text{MgBr}_2$  in 200 g of water. (Molar mass of  $\text{MgBr}_2$  = 184 g) ( $K_f$  for water = 1.86 K kg mol<sup>-1</sup>)

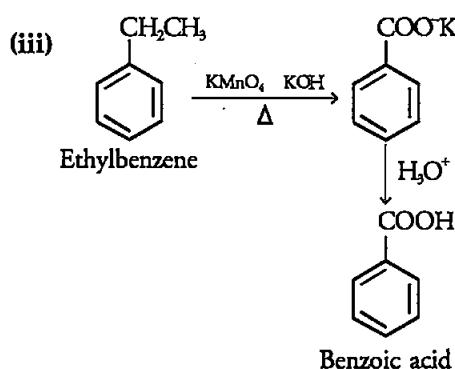
OR

(a) Define the terms osmosis and osmotic pressure. Is the osmotic pressure of a solution a colligative property ? Explain.  
 (b) Calculate the boiling point of a solution prepared by adding 15.00 g of  $\text{NaCl}$  to 250.0 g of water. ( $K_b$  for water = 0.512 K kg mol<sup>-1</sup>, Molar mass of  $\text{NaCl}$  = 58.44 g)

**Answer :** (a) Molarity is the number of moles of solute dissolved in 1 litre of solution. It is temperature dependent.

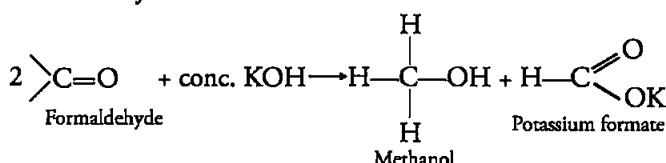
$$M = \frac{W \times 1000}{\text{Molecular mass} \times V}$$

Molality is the number of moles of solute dissolved per 1 kg of the solvent. It is temperature independent.

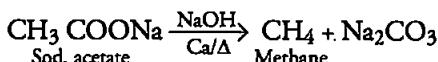

$$M = \frac{W \times 1000}{M_2 \times W}$$

Molality is independent of temperature, whereas molarity is a function of temperature because volume depends on temperature and mass does not.

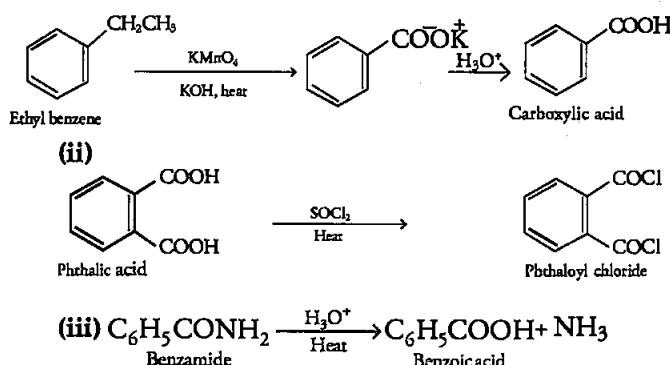
(b) Since  $\text{MgBr}_2$  is an isotonic compound. Hence undergoes complete dissociation


|                                   |                                                           |   |   |
|-----------------------------------|-----------------------------------------------------------|---|---|
|                                   | $\text{MgBr}_2 \rightarrow \text{Mg}^{2+} + 2\text{Br}^-$ |   |   |
| Initial moles                     | 1                                                         | 0 | 0 |
| After dissociation                | 0                                                         | 1 | 2 |
| Total number of moles = 1 + 2 = 3 |                                                           |   |   |






OR


**(a) (i)** An aldehyde with no  $\alpha$ -hydrogen atom undergoes self-reduction and oxidation in presence of conc. alkali to form alcohol and carboxylic acid salt.



(ii) Sodium acetate undergoes decarboxylation (removal of  $\text{CO}_2$ ) in presence of soda lime to give hydrocarbon.



(b) (i)



30. (a) Explain the following : [5]

(i)  $\text{NF}_3$  is an exothermic compound whereas  $\text{NCl}_3$  is not.\*\*

## Chemistry 2011 (Delhi)

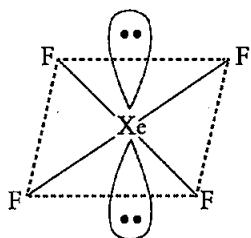
## SET II

**Time allowed : 3 hours**

Maximum marks : 70

**Note :** Except for the following questions, all the remaining questions have been asked in previous set.

3. What is meant by shape-selective catalysis of reactions? [1]


**Answer.:** The reaction that depends for shape selective catalysts uses zeolites as catalyst for reaction on the shape and size of pores and of reactants and products.

1. Which stoichiometric defect in crystals decreases the density of a solid ??\* [1]

**\*\*Answer is not given due to change in present syllabus.**

4. Draw the structure of  $\text{XeF}_4$  molecule

Answer :



[1]

(iii) Magnetic behaviour of the complex.

(iv) Number of its geometrical isomers.

(v) Whether there may be optical isomer also.

(vi) Name of the complex.

Answer : (i) +3

(ii)  $d^2sp^3$  octahedral shape.

(iii) paramagnetic

(iv) 2 geometrical isomers, cis and trans.

(v) Only cis-isomers shows optical isomerism

(vi) Dichloridobis (ethylenediamine) iron(III) chloride

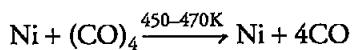
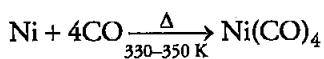
## 9. Explain what is meant by (i) a peptide linkage, (ii) a glycosidic linkage ? [2]

Answer : (i) Peptide linkage is present in proteins to bind together amino acids. The linkage involves the carboxyl group of one amino acid and amine group of another amino acids.

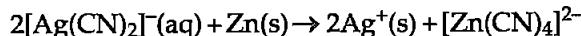
(ii) Glycosidic linkage is the  $(-\text{C}-\text{O}-\text{C}-)$  linkage present between two molecules of a monosaccharide to form a disaccharide.

## 10. Name the bases present in RNA. Which one of these is not present in DNA. [2]

Answer : Four bases present in RNA are Adenine, Guanine, Cytosine and Uracil. Uracil is not present in DNA.

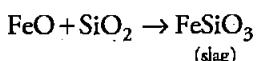


## 22. Explain the role of each the following in the extraction of metals from their ores : [3]

(i) CO in the extraction of nickel.


(ii) Zinc in the extraction of silver.

(iii) Silica in the extraction of copper.

Answer : (i) CO is used in the vapour phase refining of nickel.




(ii) Zinc acts as a reducing agent which reduces cyanide complex of silver into pure silver.



Dicyano silver (I) ion      Silver      (aq)

(iii) Silica is used to remove impurities in the form of metal oxides as slag.

24. For the complex  $[\text{Fe}(\text{en})_2\text{Cl}_2]\text{Cl}$ , identify the following : [3]

(i) Oxidation number of iron.

(ii) Hybrid orbitals and shape of the complex.

(iii) Magnetic behaviour of the complex.

(iv) Number of its geometrical isomers.

(v) Whether there may be optical isomer also.

(vi) Name of the complex.

Answer : (i) +3

(ii)  $d^2sp^3$  octahedral shape.

(iii) paramagnetic

(iv) 2 geometrical isomers, cis and trans.

(v) Only cis-isomers shows optical isomerism

(vi) Dichloridobis (ethylenediamine) iron(III) chloride

## 27. Explain the following terms with one suitable example for each : [3]

(i) A sweetening agent for diabetic patients

(ii) Enzymes

(iii) Analgesics

Answer : (i) Artificial Sweetening agents are chemicals that sweeten food. However, unlike natural sweeteners, they do not add calories to the body, not harmful to diabetic patients. e.g. Saccharin, aspartame.

(ii) Enzymes are biocatalysts which are structurally globular proteins. They are sensitive to substrate, pH and temperature changes. e.g., Trypsin

(iii) Analgesics are chemical substances which reduces pain without causing impairment of consciousness, mental confusion, in coordination of paralysis or some other disturbance of nervous system. e.g., Aspirin, (non-narcotic analgesic) and Morphine (narcotic analgesic)

## 28. (a) State the following : [5]

(i) Henry's law about partial pressure of a gas in a mixture.

(ii) Raoult's law in its general form in reference to solutions.

(b) A solution prepared by dissolving 8.95 mg of a gene fragment in 35.0 mL of water has an osmotic pressure of 0.335 torr at 25°C. Assuming the gene fragment is non-electrolyte, find its molar mass.

OR

(a) Difference between molarity and molality in a solution. What is the effect of tempe-

ture change on molarity and molality in a solution?

(b) What would be the molar mass of a compound if 6.21 g of it dissolved in 24.0 g of chloroform form a solution that has a boiling point of 68.04°C? The boiling point of pure chloroform is 61.7°C and the boiling point elevation constant,  $K_b$  for chloroform is 3.63°C/m.

**Answer :** (a)(i) Henry's law states that the partial pressure of gas in vapour phase is directly proportional to its mole fraction in the solution.

(ii) Raoult's law states that for a solution with volatile components, the partial vapour pressure of each component present in the solution is proportional to its mole fraction in the solution.

$$\text{or } M_2 = \frac{W_2 RT}{\pi V}$$

$$\therefore \text{Molar mass, } M_2 = 1.42 \times 10^4 \text{ g mol}^{-1}$$

$$(b) \text{ Given : } W_2 = 8.95 \text{ mg} = 8.95 \times 10^{-3} \text{ g}$$

$$V = 35 \text{ mL}$$

$$\pi = 0.335 \text{ torr}$$

$$T = 25^\circ\text{C} = 298 \text{ K}$$

$$M_2 = ?$$

Substituting all the values in the given formula  
 $\pi = CRT$

$$\pi = \frac{W_2 RT}{M_2 V}$$

OR

(a) Molarity is defined as the number of moles of solute present in 1 litre of solution, while molality is defined as the number of moles of solute present in 1 kg of solvent. Molality does not have any effect of change in temperature because mass does not change with temperature, whereas molarity changes with temperature.

(b) Given :  $W_2 = 6.21 \text{ g}$

$$W_1 = 24 \text{ g}$$

$$K_b = 3.63^\circ\text{C/m}$$

$$\Delta T_b = T_b - T_b^\circ = 68.04 - 61.7 = 6.34^\circ\text{C}$$

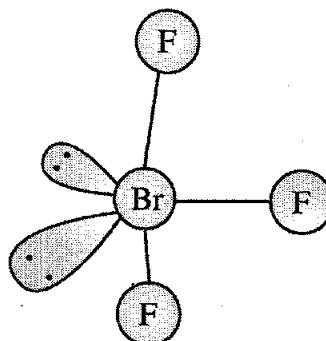
$$M_2 = ?$$

From the formula,

$$\begin{aligned} M_2 &= \frac{100 \times K_b \times W_2}{\Delta T_b \times W_1} \\ &= \frac{1000 \times 3.63 \times 6.21}{6.34 \times 24} \\ &= 148.14 \text{ g mol}^{-1} \end{aligned}$$

$\therefore$  Molar mass of the compound,  $M = 148.14 \text{ g mol}^{-1}$

## Chemistry 2011 (Delhi)

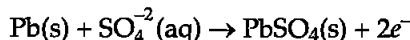

Time allowed : 3 hours

Maximum marks : 70

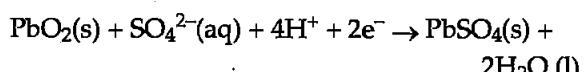
**Note :** Except for the following questions, all the remaining questions have been asked in previous sets.

4. Draw the structure of  $\text{BrF}_3$  molecule [1]

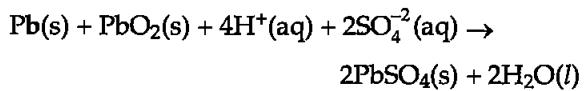
**Answer :**



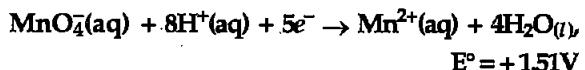

8. In nylon 6, 6 what does the designation '6, 6' mean? [1]


**Answer :** 6, 6-refers to the number of carbon atoms in each of its monomer, adipic acid and hexamethyldiamine

9. What type of a battery is lead storage battery? Write the anode and the cathode reactions and the overall reactions occurring in a lead storage battery. [2]


**Answer :** The lead storage battery is a secondary cell which is rechargeable. During discharging, the electrode reaction occurs as follows :  
At anode :



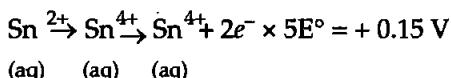

At cathode :



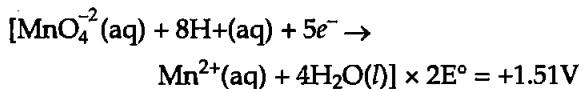
Net reaction :



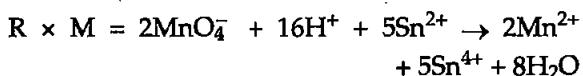
10. Two half-reaction of an electrochemical cell are given below :







Construct the redox equation from the standard potential of the cell and predict if the reaction is reactant favoured or product favoured. [2]

**Answer :** The redox reactions at anode and cathode can be represented as :


At anode (oxidation) :



At cathode (reduction) :



The Net



Now,

$$\begin{aligned} E^\circ_{\text{cell}} &= E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \\ &= 1.51 - 0.15 \\ &= +1.36\text{ V} \end{aligned}$$

∴ The positive value of  $E^\circ_{\text{cell}}$  favours formation of product.

13. Assign reasons for each of the following : [2]

(i) Transition metals generally form coloured compounds.

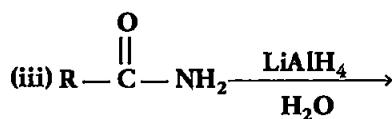
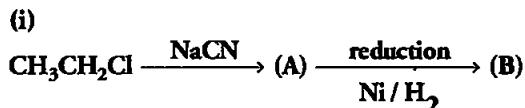
(ii) Manganese exhibits the highest oxidation state of +7 among the 3d series of transition elements.

**Answer :** (i) Due to presence of unpaired electrons and d-d transition, the transition metals are generally coloured.

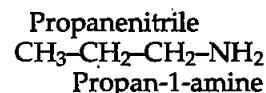
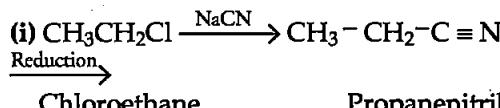
(ii) Manganese ( $Z = 25$ ), has the maximum number of unpaired electrons. Thus, it shows oxidation states from +2 to +7 which is maximum in number as compared to other elements of transition series.

18. Name the sub-groups into which polymers are classified on the basis of magnitude of intermolecular forces. [2]

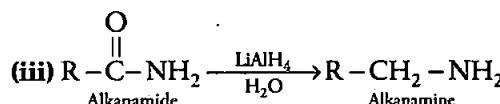
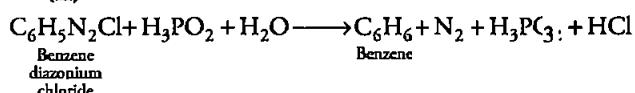
**Answer :** Elastomers : They have weakest intermolecular forces of attraction.



Fibres : They have strong intermolecular forces of attraction among its molecules.

Thermoplastics Polymers : They are semifluid substances having low molecular weight.



**Thermosetting Polymers** – They have intermolecular forces intermediate between those of elastomers and fibres.

19. The density of lead is  $11.35\text{ g cm}^{-3}$  and the metal crystallizes with fcc unit cell. Estimate the radius of lead atom. (At. mass of lead =  $207\text{ g mol}^{-1}$  and  $N_A = 6.02 \times 10^{23}\text{ mol}^{-1}$ )\*\* [3]



26. Complete the following chemical equations : [3]



**Answer :**



(ii)



27. Answer the following questions : [3]

(i) Why do soaps not work in hard water ?

(ii) What are the main constituents of dettol ?

(iii) How do antiseptics differ from disinfectants ?

**Answer :** (i) Hard water contains insoluble chloride of calcium and magnesium which forms insoluble ppt. (scum) with soap and thus cannot be rinsed off easily.

(ii) The main constituents of dettol are chloroxylenol and  $\alpha$ -terpine.

(iii) **Antiseptics** : These are chemical substances which either kill or prevent the growth of micro-organism but do not cause harm to the living tissues.

**Disinfectants** : These are chemical substances which kill the microbes. They are toxic in nature and thus causes harm to the tissues of the skin.

\*\* Answer is not given due to change in present syllabus.

Students don't need to purchase any Guide, Question Bank or Sample/model paper from market. All material will be available on this website in the form of free PDFs by 30 September. On website [www.cbsepdf.com](http://www.cbsepdf.com) following materials will be provided :

1. NCERT Solutions
2. Previous Years Papers (2011-2019)
3. Previous Years Chapterwise Question Bank
4. 20 Solved Sample Paper

Students can download from following website

**[www.cbsepdf.com](http://www.cbsepdf.com)**

A mission for free content for all.



9. Express the relation among cell constant, resistance of the solution in the cell and conductivity of the solution. How is molar conductivity of a solution related to its conductivity. [2]

OR

The molar conductivity of a 1.5 M solution of an electrolyte is found to be  $138.9 \text{ S cm}^2 \text{ mol}^{-1}$ . Calculate the conductivity of this solution.

Answer :  $CG^* = k$

Where,  $C$  = conductance,  $G^*$  = cell constant,  $k$  = conductivity

$$G^* \times \frac{1}{R} k \Rightarrow G^* = Rk$$

$$\therefore \Lambda_m = \frac{k \times 1000}{M} \text{ S cm}^2 \text{ mol}^{-1}$$

OR

Given :  $M = 1.5 \text{ M}$

$$\Lambda_m = 138.9 \text{ S cm}^2 \text{ mol}^{-1}$$

$$\Lambda_m = \frac{1000K}{M}$$

$$M = \frac{k \cdot \Lambda_m}{1000} = \frac{1.5 \times 138.9}{1000} = \frac{1000}{1000}$$

$$M = 0.2085 \text{ S cm}^{-1}$$

10. A reaction is of second order with respect to a reactant. How is its rate affected if the concentration of the reactant is (i) doubled (ii) reduced to half ? [2]

Answer : (i) Rate increases by four times,

$$R' = 2R \Rightarrow r = k[2R]^2 = 4kR^2$$

(ii) Rate is reduced by  $\frac{1}{4}$  times,

$$R' = \frac{1}{2} R \Rightarrow r = k \left[ \frac{R}{2} \right]^2 = \frac{k}{4} R^2$$

11. Which methods are usually employed for purifying the following metals : [2]

(i) Nickel, (ii) Germanium.

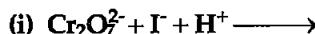
Mention the principle behind each one of them.

Answer : (i) Mond's I  $\parallel$  ess : In this method Nickel form volatile complex with Co which decomposes on heating to give pure nickel.

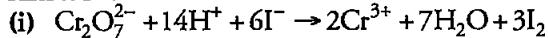
(ii) Zone Refining : It is based on the principle that the impurities are more soluble in the molten state than in the solid state of metal.

12. Explain the following facts giving appropriate reason in each case : [2]

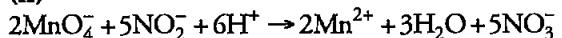
(i)  $\text{NF}_3$  is an exothermic compound whereas  $\text{NCl}_3$  is not.


(ii) All the bond in  $\text{SF}_4$  are not equivalent.

Answer : (i) The bond energy of F-F bond is

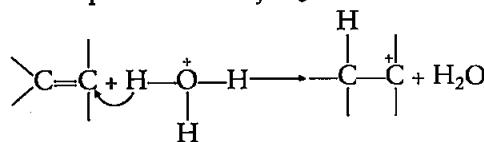

lower than that of N-F bond So  $\text{NF}_3$  is an exothermic compound whereas bond energy of Cl-Cl bond is higher than N-Cl bond so  $\text{NCl}_3$  is an endothermic compound.

(ii)  $\text{SF}_4$  has see-saw structure with bond pairs at two equatorial and two axial positions. Hence, all the bonds in  $\text{SF}_4$  are not equivalent.

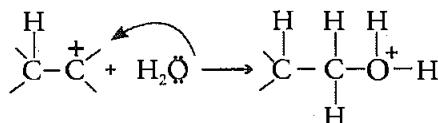

13. Complete the following chemical reaction equations : [2]



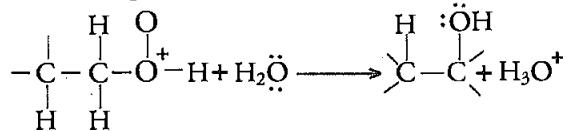
Answer :




(ii)




14. Explain the mechanism of acid catalysed hydration of an alkene to form corresponding alcohol. [2]


Answer : Step 1 : Carbocation is formed due to electrophilic attack by  $\text{H}_3\text{O}^+$ .



Step 2 : Nucleophilic water attacks the carbocation.



Step 3 : Deprotonation to form an alcohol



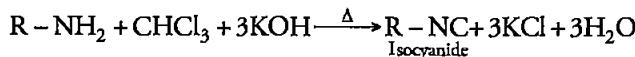
15. Explain the following behaviours : [2]

(i) Alcohols are more soluble in water than the hydrocarbons of comparable molecular masses.

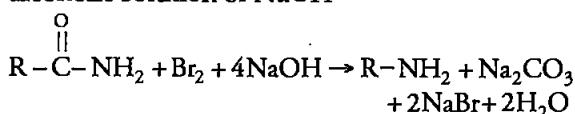
(ii) Ortho-nitrophenol is more acidic than ortho-methoxyphenol.

Answer : (i) Due to the formation of hydrogen bonds by alcohols with water molecules.

(ii) The phenoxide ion is more stable for *o*-nitrophenol as nitro group is electron withdrawing due to resonance while methoxy group is electron donating via resonance.


16. Describe the following giving the relevant chemical equation in each case : [2]

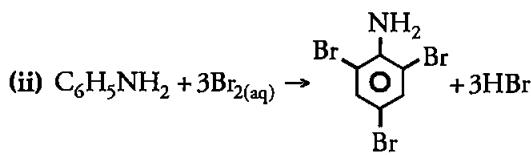
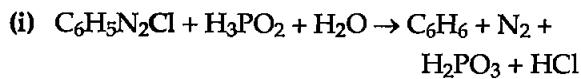
(i) Carbylamine reaction


(ii) Hofmann's bromamide reaction.

Answer : (i) Carbylamine Reaction : When


aliphatic and aromatic primary amines are heated with chloroform and ethanolic KOH solution, they form isocyanides or carbylamines which are foul smelling substances.





(ii) **Hofmann's Bromamide Reaction** : In this reaction, primary amines are prepared by treating an amide with  $\text{Br}_2$  in an aqueous or alcoholic solution of NaOH



17. Complete the following reaction equations : [2]



**Answer :**



18. What are food preservatives? Name two such substances. [2]

**Answer :** Chemicals used to prevent spoilage of food by preventing growth of microorganisms like bacteria, fungus etc are called food preservatives. Sodium benzoate, nitrogen gas are two such substances which are used as food preservatives.

19. Copper crystallizes with face centred cubic unit cell. If the radius of copper atom is 127.8 pm, Calculate the density of copper metal. [3]

(Atomic mass of Cu = 63.55 u and Avogadro's number  $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ )\*

**OR**

Iron has a body centred cubic unit cell with the cell dimension of 286.65 pm. Density of iron is 7.87 g  $\text{cm}^{-3}$ . Use this information to calculate Avogadro's number. (Atomic mass of Fe = 56.0 u)\*\*

20. The electrical resistance of a column of 0.05 M NaOH solution of diameter 1 cm and length 50 cm is  $5.55 \times 10^3$  ohm. Calculate its resistivity, conductivity and molar conductivity. [3]

**Answer :**

$$A = \pi r^2 = 3.14 \times (0.5)^2 = 0.785 \text{ cm}^2, l = 50 \text{ cm}$$

$$R = \frac{\rho I}{A} \quad \rho = \frac{AR}{I} = \frac{5.55 \times 10^{-3} \times 0.785}{50}$$

$$\rho = 87.18 \Omega \text{ cm}$$

$$\text{Conductivity, } K = \frac{1}{\rho} = 0.01147 \text{ S cm}^{-1}$$

$$\text{Molar Conductivity} = \frac{1000 \times K}{C} = \frac{0.01147 \times 1000}{0.05}$$

$$\Lambda_m = 229.4 \text{ S cm}^2 \text{ mol}^{-1}$$

21. The reaction  $\text{N}_2(\text{g}) + \text{O}_2(\text{g}) \rightleftharpoons 2\text{NO}(\text{g})$  contributes to air pollution whenever a fuel is burnt in air at a high temperature. At 1500 K, equilibrium constant K for it is  $1.0 \times 10^{-5}$ . Suppose in a case  $[\text{N}_2] = 0.80 \text{ mol L}^{-1}$  and  $[\text{O}_2] = 0.20 \text{ mol L}^{-1}$  before any reaction occurs. Calculate the equilibrium concentrations of the reactants and the product after the mixture has been heated to 1500 K. [3]

**Answer :**  $\text{N}_2(\text{g}) + \text{O}_2(\text{g}) \rightleftharpoons 2\text{NO}(\text{g})$

Initial conc. 0.80 0.20 0

at equilibrium  $0.80 - x$   $0.20 - x$   $2x$

Initial conc. at :  $0.80 - x$  0.80  $0.20 - 2x$

equilibrium

$$K = \frac{[\text{NO}]^2}{[\text{O}_2][\text{N}_2]} = \frac{(2x)^2}{(0.8 - x)(0.2 - x)} = 10^{-5}$$

$$\Rightarrow \frac{(4x)^2}{0.16 - 1x + x^2} = 10^5$$

$$\Rightarrow 400000x^3 = x^2 - x + 0.16$$

$$\Rightarrow 399999x^2 + x - 0.16 = 0$$

$$b^2 - 4ac = (1)^2 - 4(399999)(-0.16) = 1 + 255999.36 = 256000.36$$

$$\Rightarrow \sqrt{b^2 - 4ac} = \sqrt{256000.36} = 505.96$$

$$x = \frac{-1 \pm 505.96}{2 \times 399999} = \frac{504.96}{2 \times 399999} = 0.63 \times 10^{-3}$$

$$[\text{NO}] = 2x = 2 \times 0.63 \times 10^{-3} = 1.26 \times 10^{-3} \text{ mol/litre}$$

22. Explain the following terms giving a suitable example for each : [3]

(i) Aerosol, (ii) Emulsion, (iii) Micelle.

**Answer :** (i) An aerosol is a colloid in which dispersed phase is a solid and dispersion medium is a gas eg., Dust, smoke.

(ii) Emulsion is a colloid solution in which both the dispersed phase and dispersion medium are in liquid state. eg., Milk and cod liver oil.

(iii) They are associated colloids showing colloidal behaviour at high concentration and

\*\*Answer is not given due to change in present syllabus.

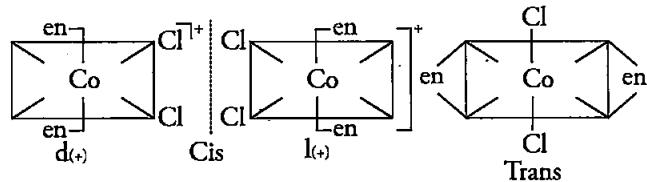
strong electrolytes at low concentration. e.g., Soap.

23. How would you account for the following : [3]

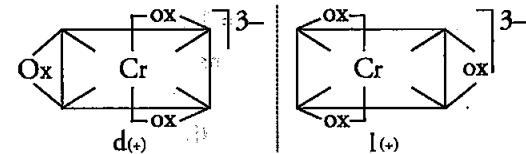
- Among lanthanoids, Ln (III) compounds are predominant. However, occasionally in solution or in solid compounds, +2 and +4 ions are also obtained.
- The  $E^\circ_{m2+/m}$  for copper is positive (0.34 V). Copper is the only metal in the first series of transition elements showing this behaviour.
- The metallic radii of the third (5d) series of transition metals are nearly the same as those of the corresponding members of the second series.

**Answer :** (i) Some lanthanoid show +2 and +4 oxidation states in ionic solutions or solid components due to the extra stability that arises because of empty half-filled or fully filled 4f-subshell.

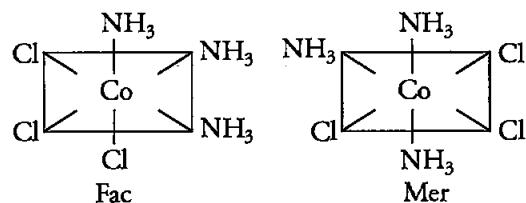
(ii) This is because copper has high enthalpy of atomization and low enthalpy of hydration. Hence,  $E^\circ_{Cu^{2+}/Cu}$  is positive.


(iii) This is because of lanthanoid contraction the metallic radii of the third (5d) series of transition metals are nearly the same as those of the corresponding members of the second series.

24. Name the following coordination entities and draw the structures of their stereoisomers : [3]


- $[Co(en)_2Cl_2]^+$  (en = ethan-1, 2-diamine)
- $[Cr(C_2O_4)_3]^{3-}$
- $[Co(NH_3)_3Cl_3]$

(Atomic numbers Cr = 24, Co = 27)


**Answer :** (i)  $[Co(en)_2Cl_2]^+$  dichloridobis (ethan-1,2 diamine) cobalt (III) ion



(ii)  $[Cr(C_2O_4)_3]^{3-}$ : Trioxalatochromate (III) ion



(iii)  $[Co(NH_3)_3Cl_3]$  triaminetrichloridocobalt (III)



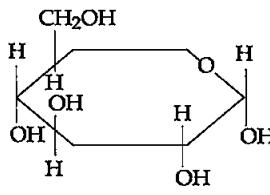
25. Answer the following questions : [3]

(i) What is meant by chirality of a compound ? Give an example.

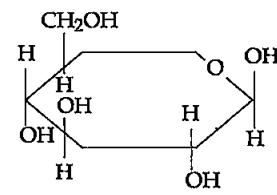
(ii) Which one of the following compounds is more easily hydrolyzed by KOH and why ?  $CH_3CHClCH_2CH_3$  or  $CH_3CH_2CH_2Cl$

(iii) Which one undergoes  $S_N2$  substitution reaction faster and why ?  $\text{~~~~~}^1$  or  $\text{~~~~~}^{\text{Cl}}$

**Answer :** (i) Chirality is the property of a molecule to have non-superimposable mirror images. These molecules contain one asymmetric carbon atom.

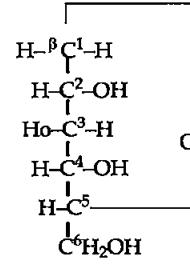
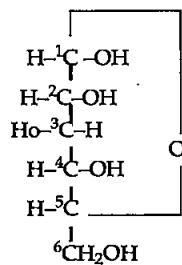

e.g., Butan - 2- ol

(ii)  $CH_3CHClCH_2CH_3$  is more easily hydrolyzed due to the formation of more stable secondary carbocation.


(iii)  $CH_3CH_2CH_2Cl$  undergoes  $S_N2$  substitution reaction faster because it is a better leaving group due to its large size and less electronegativity.

26. What is essentially the difference between  $\alpha$ -glucose and  $\beta$ -glucose ? What is meant by pyranose structure of glucose ? [3]

**Answer :**  $\alpha$ -glucose and  $\beta$ -glucose are two cyclic hemiacetal forms of glucose which differ only in the configuration of hydroxyl group ( $-OH$ ) at anomeric carbon. Such isomers are called anomers. The six-membered cyclic structure of glucose is called pyranose structure.


$\alpha$ -glucose



$\beta$ -glucose

**Pyranose Structure of Glucose :** The six membered ring contains oxygen atom because of its resemblance with pyran it is called pyranose form.



$\alpha$ -D-(+)-Glucopyranose  $\beta$ -D-(+)-Glucopyranose

27. Differentiate between thermoplastic and thermosetting polymers. Give one example of each. [3]

**Answer :** Thermoplastic Polymers : These

polymers do not have cross-links between their chains and hence can be reshaped upon heating eg. Polyethylene, Polypropene etc.

**Thermosetting Polymers :** These polymers have cross-links between their chains and hence cannot be reshaped upon heating. eg. Bakelite, Melamine etc.

28. (a) Define the following terms : [5]

- (i) Mole fraction
- (ii) Ideal solution.

(b) 15.0 g of an unknown molecular material was dissolved in 450 g of water. The resulting solution was found to freeze at  $-0.34^{\circ}\text{C}$ . What is the molar mass of this material ? ( $K_f$  for water =  $1.86 \text{ K kg mol}^{-1}$ )

OR

(a) Explain the following :

- (i) Henry's law about dissolution of a gas in a liquid.
- (ii) Boiling point elevation constant for a solvent.

(b) A solution of glycerol ( $\text{C}_3\text{H}_8\text{O}_3$ ) in water was prepared by dissolving some glycerol in 500 g of water. This solution has a boiling point of  $100.42^{\circ}\text{C}$ . What mass of glycerol was dissolved to make this solution ? ( $K_b$  for water =  $0.512 \text{ K kg mol}^{-1}$ ).

**Answer :** (a) (i) The ratio of number of moles of a solute (components of a mixture) to the total number of moles in the mixture is called mole fraction  $x_A = \frac{n_A}{n_A + n_B}$  or  $x_B = \frac{n_B}{n_A + n_B}$

(ii) A solution that obeys Raoult's law at all temperature and concentration is called an ideal solution.

(b) Given :  $W_2 = 15.0 \text{ g}$ ,  $\Delta T_f = 0.34^{\circ}\text{C}$

$W_1 = 450 \text{ g}$ ,  $K_f = 1.86 \text{ K kg mol}^{-1}$

from the formula,  $\Delta T_f = \frac{1000 \cdot K_f \cdot W_2}{W_1 \cdot M_2}$

$$M_2 = \frac{1000 \cdot K_f \cdot W_2}{\Delta T_f \cdot W_1} = \frac{1000 \cdot 1.86 \cdot 15}{0.34 \cdot 450}$$

$$M_2 = 182.35 \text{ g/mol}$$

OR

(a) (i) Henry's law states that at a constant temperature, the solubility of a gas in a liquid is directly proportional to the pressure of the gas. i.e.,  $p = K_H x$

(ii) The boiling point elevation constant for a solvent is defined as the elevation in boiling point when the molality of the solution is unity.

(b) Given :

$$W_1 = 500 \text{ g}$$

$$K_b = 0.512 \text{ K kg mol}^{-1}$$

$$\Delta T_b = (100.42 - 100)^{\circ}\text{C}$$

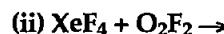
$$= 0.42^{\circ}\text{C}$$

$$\Delta T_b = \frac{1000 \cdot K_b \cdot W_2}{W_1 \cdot W_2}$$

$$W_2 = \frac{\Delta T_b \cdot W_1 \cdot M_2}{1000 \cdot K_b} = \frac{0.42 \times 500 \times 92}{1000 \times 0.512}$$

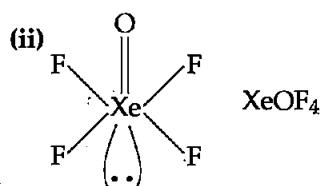
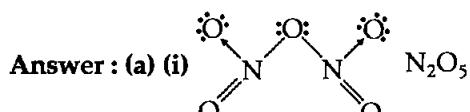
$$W_2 = 37.7 \text{ g}$$

29. (a) Draw the molecular structures of the following compounds : [2,3]


- (i)  $\text{N}_2\text{O}_5$
- (ii)  $\text{XeOF}_4$

(b) Explain the following observations :

- (i) Sulphur has a greater tendency for catenation than oxygen.
- (ii)  $\text{I}-\text{Cl}$  is more reactive than  $\text{I}_2$ .
- (iii) Despite lower value of its electron gain enthalpy with negative sign, fluorine ( $\text{F}_2$ ) is a stronger oxidizing agent than  $\text{Cl}_2$ .



OR

(a) Complete the following chemical equations :

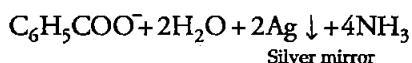
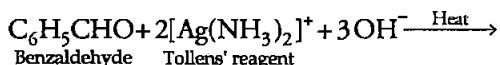


(b) Explain the following observations :

- (i) Phosphorus has greater tendency for catenation than nitrogen.
- (ii) Oxygen is a gas but sulphur a solid.
- (iii) The halogens are coloured. Why ?



(b) (i) Due to strong S—S bond and less interelectronic repulsion, sulphur has greater tendency for catenation.



(ii)  $\text{I}-\text{Cl}$  bond is polar and hence more reactive compound to  $\text{I}_2$  in which  $\text{I}-\text{I}$  bond is non-polar.

(iii) Due to high electronegativity and small size of fluorine, it acts as a stronger oxidizing agent.

OR



mirror test but acetophenone being a ketone does not give this test.



(b) (i) Methyl tert - butyl ketone < Acetone < Acetaldehyde.

(ii) 4-methoxybenzoic acid < benzoic acid < 3,4 dinitrobenzoic acid

(iii)  $(\text{CH}_3)_2\text{CHCOOH} < \text{CH}_3\text{CH}(\text{Br})\text{CH}_2\text{COOH} < \text{CH}_3\text{CH}_2\text{CH}(\text{Br})\text{COOH}$

## Chemistry 2012 (Outside Delhi)

## SET II

Time allowed : 3 hours

Maximum marks : 70

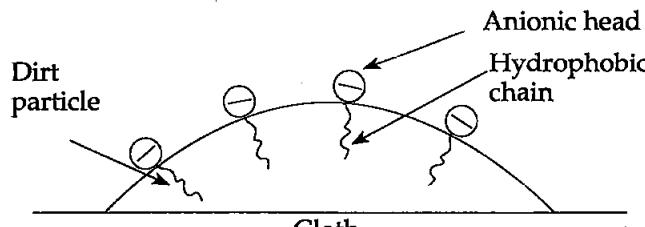
Note : Except for the following questions, all the remaining questions have been asked in previous set.

1. Which stoichiometric defect increases the density of a solid ?\*\* [1]

2. What is meant by 'shape selective catalysis' ? [1]

**Answer :** Zeolites are shape selective catalysts and shape selective catalysis depends upon the structure of the pores present in the catalyst and size of the reactant and product molecules. ZSM-5 is an example of shape selective catalyst, which is used in converting alcohol directly into gasoline.

3. What is the role of collectors in Froth Floatation process ? [1]

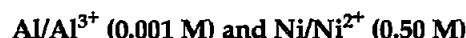

**Answer :** Collectors help in attachment of ore particle to an air bubble in froth e.g., Sodium xanthates.

6. Write the IUPAC name of  $\text{Ph}-\text{CH}=\text{CH}-\text{CHO}$ . [1]

**Answer :** 3-phenyl prop-2-enal

17. Explain the cleaning action of soap. Why do soaps not work in hard water ? [2]

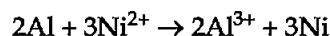
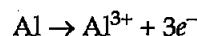
**Answer :** When soap is rubbed on dirty cloth in water, concentration of soap becomes greater than (CMC) critical micelle concentration, micelle formation takes place. These micelles get adsorb at the dirt or grease




In such a manner that hydrophobic end get adsorbs and anionic head remains at the surface.

Therefore dirt particle become negatively charged and when rinsing is done, this particle moves along with water and clothes become free from dirt or grease.

In soap sodium or potassium salts of fatty acids are present e.g.,  $\text{C}_{17}\text{H}_{35}\text{COO}^-\text{Na}^+$  (sodium stearate) when it is added in hard water, presence of calcium or magnesium salts makes insoluble salts of Ca or Mg with carboxylate ion called scum which stick to cloth as gummy mass.



20. A voltaic cell is set up at  $25^\circ\text{C}$  with the following half cells :



Write an equation for the reaction that occurs when the cell generates an electric current and determine the cell potential. [3]

$$E_{\text{Ni}^{2+}/\text{Ni}} = -0.25 \text{ V} \text{ and } E^\circ_{\text{Al}^{3+}/\text{Al}} = -1.66 \text{ V. } (\log 8 \times 10^{-6} = -0.54)$$

**Answer :**



$$E^\circ_{\text{cell}} = E^\circ_{\text{red}} - E^\circ_{\text{ox}}$$

$$E^\circ_{\text{cell}} = (-0.25) - (-1.66)$$

$$= 1.41 \text{ V}$$

$$E^\circ_{\text{Mn}^{+2}/\text{M}} = E^\circ_{\text{cell}} = \frac{0.0591}{6} \log \frac{[\text{Al}^{3+}]^2}{[\text{Ni}^{2+}]^3}$$

$$E^\circ_{\text{Mn}^{+2}/\text{M}} = 1.41 = \frac{0.0591}{6} \log \frac{(1 \times 10^{-3})^2}{(5 \times 10^{-1})^3}$$

$$= 1.41 - 0.00985 \log \frac{1000 \times 10^{-3}}{125 \times 10^{-3}}$$

$$= 1.41 - 0.00985 \log 2 \times 10^{-6}$$

$$= 1.41 - (0.00985 \times -0.54)$$

$$= 1.41 - 0.005319 = 1.415 \text{ V}$$

\*\* Answer is not given due to change in present syllabus.

**23. Explain the following observations :**

- Many of the transition elements are known to form interstitial compounds.
- There is a general increase in density from titanium ( $Z = 22$ ) to copper ( $Z = 29$ ).
- The members of the actinoid series exhibit a larger number of oxidation states than the corresponding members of the lanthanoid series. [3]

**Answer :** (i) Transition elements are known to form interstitial compounds because these elements are capable of entrapping smaller atoms of other elements such as H, C and N in the interstitial sites in their crystal lattice.

(ii) It is due to increase in atomic mass whereas atomic size decreases from Ti to Cu. Therefore, density goes on increasing.

(iii) Because of the comparable energies of  $5f$ ,  $6d$  and  $7s$  orbitals in actinoids, they exhibit larger number of oxidation states than the corresponding members of lanthanoid series.

**27. Explain the following terms giving a suitable example for each :** [3]

- Elastomers
- Condensation polymers
- Addition polymers.

**Answer :** (i) Elastomers : Their polymer chain are held together by weakest intermolecular forces so that they can be stretched. That is why they exhibit elastic properties and are rubber-like solids. e.g., : Buna-S, Buna-N etc.

(ii) Condensation Polymers : They are formed by repeated condensation reaction between two different bi or tri-functional monomeric units with the elimination of smaller molecules such as water, alcohol, HCl etc. e.g., : Nylon 6, 6.

(iii) Addition Polymers : They are formed by the repeated addition of monomer molecules having double or triple bonds. e.g. : Polyethylene.

**30. (a) Draw the structures of the following molecules :** [5]

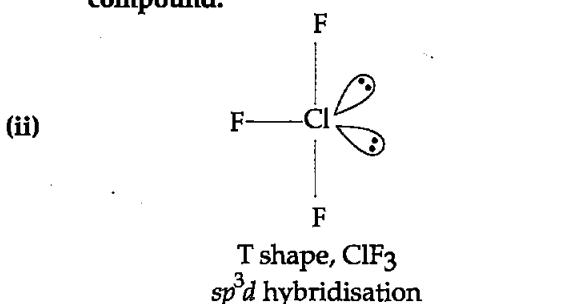
- $H_3PO_2$  \*\*
- $ClF_3$ .

**(b) Explain the following observations :**

- Nitrogen is much less reactive than phosphorus.\*\*

- Despite having greater polarity, hydrogen fluoride boils at a lower temperature than water.
- Sulphur has a greater tendency for catenation than oxygen in the same group.

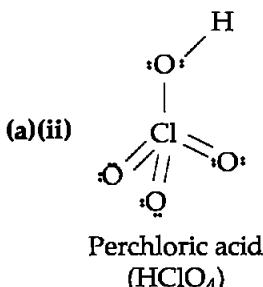
**OR****(a) Draw the structures of the following molecules :**


- $N_2O_5$  \*\*
- $HClO_4$ .

**(b) Explain the following observations :**

- $H_2S$  is more acidic than  $H_2O$ .

- Fluorine does not exhibit any positive oxidation state.


- Helium forms no real chemical compound.



**b(i)** Due to  $N \equiv N$  triple bond in  $N_2$  molecule, it is inert and hence is less reactive as compared to phosphorous which has P-P single bond, which makes it more reactive.

**(ii)** In case of HF, average two intermolecular hydrogen bonds are present. As a result, Vander Waals forces of attraction increases in water molecule and hence, boiling point increases.

**(iii)** Because S-S bond is stronger than O-O bonds as there is more interelectronic repulsion in O-O than in S-S.

**OR**

\*\* Answer is not given due to change in present syllabus.

(b) (i) Because bond dissociation enthalpy of H-S bond in  $H_2S$  is less than that of H-O bond in  $H_2O$ .

(ii) Flourine is the most electronegative element in nature and it has no  $d$ -orbitals and therefore, there is no scope for electron promotion.

Hence, it can show only -1 oxidation state in its compounds.

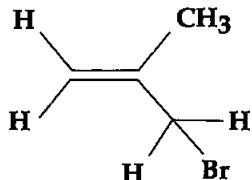
(iii) Because it is an inert gas and has very high ionization enthalpy, therefore no real chemical compound of helium is known.

••

## Chemistry 2012 (Outside Delhi)

## SET III

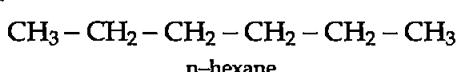
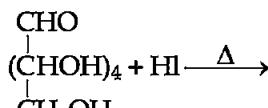
Time allowed : 3 hours


Maximum marks : 70

Note : Except for the following questions, all the remaining questions have been asked in previous sets.

1. What are  $n$ -type semiconductors ?\*\* [1]

4. What is the basicity of  $H_3PO_2$  acid and why ? \*\* [1]



5. Write the IUPAC name of the following : [1]



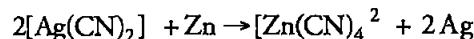
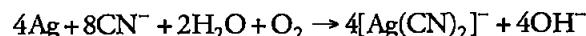
Answer : 3 Bromo-2-methyl propene.

7. Write a reaction which shows that all the carbon atoms in glucose are linked in a straight chain. [1]

Answer :



8. What is the cause of a feeling of depression in human beings ? Name a drug which can be useful in treating this depression. [1]



Answer : The inability to achieve one's goal and extra work may cause the level of noradrenaline low, as a result the signal-sending activity becomes low and the person suffers from depression. Tranquillizers such as Equanil can help in treating depression.

11. Explain the role of each of the following : [2]

(i)  $\text{NaCN}$  in the extraction of silver.

(ii)  $\text{SiO}_2$  in the extraction of copper.

Answer : (i) Dil.  $\text{NaCN}$  solution is used to leach silver (Ag) from silver ore in the presence of air. The silver metal is obtained by replacement.



(ii)  $\text{SiO}_2$  is used to remove impurity and it reacts with  $\text{FeO}$  to form easily removable feasible slag  
 $\text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3$   
 slag

22. Write three distinct features of chemisorption which are not found in physisorption. [3]

Answer : The three distinct features of chemisorption are :

(i) It is irreversible.

(ii) It occurs by chemical bond formation and hence requires activation energy.

(iii) It is highly specific in nature.

23. Explain each of the following observations : [3]

(i) With the same  $d$ -orbital configuration ( $d^4$ ),  $\text{Cr}^{2+}$  is a reducing agent while  $\text{Mn}^{3+}$  is an oxidising agent.

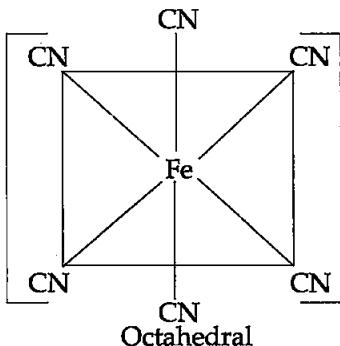
(ii) Actinoids exhibit a much larger number of oxidation states than the lanthanoids.

(iii) There is hardly any increase in atomic size with increasing atomic numbers in a series of transition metals.

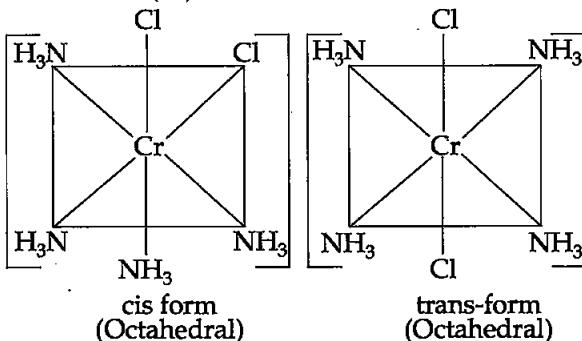
Answer : (i)  $\text{Cr}^{2+}$  is reducing because when it loses one electron to form  $\text{Cr}^{3+}$ :  $[\text{Ar}]3d^3$ , it has three unpaired electrons in lower energy  $d$ -orbitals which are more stable whereas  $\text{Mn}^{3+}$  is oxidizing because after gaining one electron it becomes  $\text{Mn}^{2+}$  which has more stable electronic configuration due to half-filled  $d$ -orbitals  $\text{Mn}^{2+} : [\text{Ar}]3d^5$

(ii) Due to comparable energies of  $5f$ ,  $6d$  and  $7s$  orbitals and unpaired electrons in these orbitals, actinoids exhibit much larger number of oxidation states than the lanthanoids.

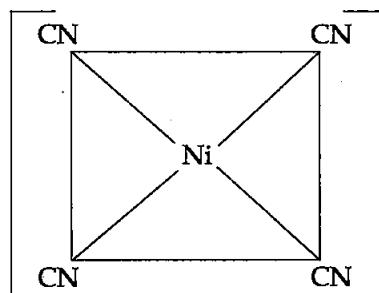
(iii) Because along transition series, nuclear charge increases which tends to decrease the size but the addition of electrons in the penultimate  $d$ -subshell increases the screening effect which counter balances the effect of increased nuclear charge. Thus, atomic radii does not change.


\*\* Answer is not given due to change in present syllabus.

24. Name the following coordination entities and describe their structures : [3]




(Atomic Numbers Fe = 26, Cr = 24, Ni = 28)


Answer : (i)  $[\text{Fe}(\text{CN})_6]^{4-}$ : Hexacyanoferrate (II) ion.



(ii)  $[\text{Cr}(\text{NH}_3)_4\text{Cl}_2]^+$  : Tetraamminnedichlorido Chromium (III) ion



(iii)  $[\text{Ni}(\text{CN})_4]^{2-}$ : Tetracyanonickelate (II) ion



26. Define the following as related to proteins : [3]

(i) Peptide linkage  
(ii) Primary structure  
(iii) Denaturation.

Answer : (i) Peptide linkage is the amide linkage between two amino acids to form proteins and polypeptides. CO-NH is peptide linkage.

(ii) The simple linear structure of a protein molecule in a specific sequence in which various amino acids are present.

(iii) When a protein in its native form is subjected to any physical change like change in temperature or chemical change like change in pH, the H-bonds gets disturbed. Due to this globules unfold and helix get uncoiled and protein loses its biological activity. This is called denaturation of protein.

## Chemistry 2012 (Delhi)

SET I

Time allowed : 3 hours

Maximum marks : 70

1. What is meant by 'doping' in a semiconductor?\*\* [1]

2. What is the role of graphite in the electrometallurgy of aluminium? [1]

Answer : Graphite is used as anode and useful for the reduction of  $\text{Al}_2\text{O}_3$  into Al.

3. Which one of  $\text{PCl}_4^+$  and  $\text{PCl}_4^-$  is not likely to exist and why?\*\* [1]

4. Give the IUPAC name of the following compound.



|



Answer : 3-bromo-2-methylpropene

5. Draw the structural formula of 2-methylpropan-2-ol molecule. [1]

Answer :  $\text{H}_3\text{C} - \begin{array}{c} \text{CH}_3 \\ | \\ \text{C} - \text{CH}_3 \\ | \\ \text{OH} \end{array}$

6. Arrange the following compounds in an increasing order of their reactivity in nucleophilic addition reactions : ethanol, propanal, propanone, butanone.

Answer : Butanone < Propanone < Propanal < Ethanol

7. Arrange the following in the decreasing order of their basic strength in aqueous solutions :



Answer :  $(\text{CH}_3)_2\text{NH} > \text{CH}_3\text{NH}_2 > (\text{CH}_3)_3\text{N} > \text{NH}_3$

\*\* Answer is not given due to change in present syllabus.



(ii) The basic principle involved in column chromatography is that different elements present in a mixture are adsorbed on adsorbent at different extents.

14. Explain the following giving an appropriate reason in each case. [2]

(i) O<sub>2</sub> and F<sub>2</sub> both stabilize higher oxidation states of metals but O<sub>2</sub> exceeds F<sub>2</sub> in doing so.

(ii) Structures of xenon fluorides cannot be explained by Valence Bond approach.

Answer : (i) Due to the difference in atomic size of oxygen and fluorine and the property of oxygen to form multiple bonds with metals, O<sub>2</sub> exceeds F<sub>2</sub> stabilize higher oxidation states.

(ii) For explaining the structures of xenon fluorides, we need to use VSEPR and hybridization theories because in VBT, covalent bonds are formed by overlapping of half filled atomic orbital. But xenon has fully filled electronic configuration.

15. Complete the following chemical equations : [2]

(i) Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> + H<sup>+</sup> + I<sup>-</sup>

(ii) MnO<sub>4</sub><sup>-</sup> + NO<sub>2</sub><sup>-</sup> + H<sup>+</sup> →

Answer :

(i) Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> + 14H<sup>+</sup> + 6I<sup>-</sup> → 2Cr<sup>3+</sup> + 7H<sub>2</sub>O + 3I<sub>2</sub>

(ii) 2MnO<sub>4</sub><sup>-</sup> + 5NO<sub>2</sub><sup>-</sup> + 6H<sup>+</sup> → 2Mn<sup>2+</sup> + 3H<sub>2</sub>O + 5O<sub>3</sub><sup>-</sup>

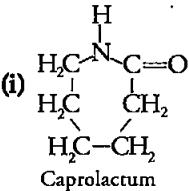
16. What is meant by (i) peptide linkage (ii) biocatalysts ? [2]

Answer : (i) Peptides linkage is the amide bond that helps to connect amino acids to form proteins. It is formed between -COOH and -NH<sub>2</sub> group of two amino acids with the loss of water molecule.

(ii) Biocatalysts are enzymes that catalyses the biochemical reactions in the bodies of living organisms. e.g., Amylase.

17. Write any two reactions of glucose which cannot be explained by the open chain structure of glucose molecule. [2]

Answer : Two reactions which can't be explained by open chain structure of glucose are :


(i) Despite having the aldehyde group, glucose does not gives 2, 4 -DNP test.

(ii) The pentaacetate of glucose does not react with hydroxylamine indicating the absence of free -CHO group.

18. Draw the structure of the monomer for each of the following polymers : [2]

(i) Nylon 6, (ii) Polypropene.

Answer :

(i) 

(ii) CH3-CH=CH2  
Propene  
Caprolactum

19. Tungsten crystallizes in body centered cubic unit cell. If the edge of the unit cell is 316.5 pm, what is the radius of tungsten atom ?\*\* [3]

OR

Iron has a body centered cubic unit cell with a cell dimension of 286.65 pm. The density of iron is 7.874 g cm<sup>-3</sup>. Use this information to calculate Avogadro's number. (At mass of Fe = 55.845 u)\*\*

20. Calculate the amount of KCl which must be added to 1 kg of water so that the freezing point is depressed by 2K. (K<sub>f</sub> for water = 1.86 K kg mol<sup>-1</sup>) [3]

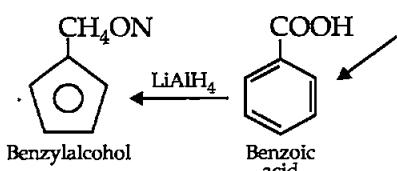
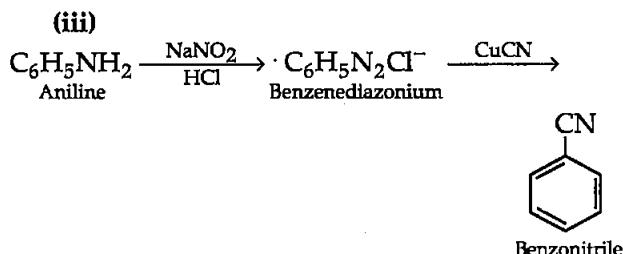
Answer : Given,

K<sub>f</sub> = 1.86 K kg mol<sup>-1</sup>  
i = 2, ΔT<sub>f</sub> = 2K  
M = 74.5  
ΔT<sub>f</sub> = iMK<sub>f</sub>

2 = 2 × 1.86, 
$$\frac{\text{Mass of KCl}}{74.5} = \frac{74.5}{1.86} = 40.05 \text{ gm}$$

21. For the reaction [3]

2NO(g) + Cl<sub>2</sub>(g) → 2NOCl(g)



the following data were collected. All the measurements were taken at 263 K :

| Experiment No. | Initial [NO] (M) | Initial [Cl <sub>2</sub> ] (M) | Initial rate of disappearance of Cl <sub>2</sub> (M/min) |
|----------------|------------------|--------------------------------|----------------------------------------------------------|
| 1              | 0.15             | 0.15                           | 0.60                                                     |
| 2              | 0.15             | 0.30                           | 1.20                                                     |
| 3              | 0.30             | 0.15                           | 2.40                                                     |
| 4              | 0.25             | 0.25                           | ?                                                        |

(a) Write the expression for rate law.  
(b) Calculate the value of rate constant and specify its units.

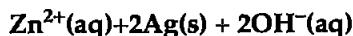
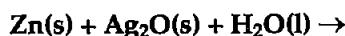
\*\*Answer is not given due to change in present syllabus.





27. What are the following substances ? Give one example of each one of them. [3]

- Tranquilizers
- Food preservatives
- Synthetic detergents.



**Answer :** (i) Tranquilizers are drugs that act on the central nervous system to get relief from anxiety, stress etc. They are used in treatment of stress related mental disorders e.g., Equanil.

(ii) These are chemicals used to preserve food by protecting it against microbial growth e.g., Sodium benzoate.

(iii) Synthetic detergents have all the properties of soap but they do not precipitate in hard water. e.g., Sodium *p*-dodecyl benzenesulphonate.

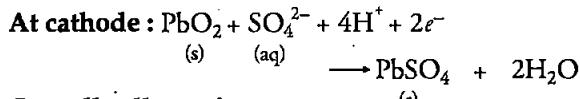
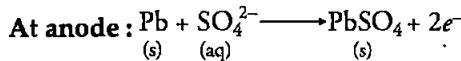
28. (a) What type of a battery is the lead storage battery ? Write the anode and the cathode reactions and the overall reactions occurring in a lead storage battery when current is drawn from it. [2],[3]

(b) In the button cell, widely used in watches, the following reaction takes place.

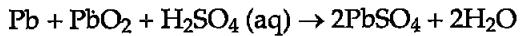


Determine  $E^\circ$  and  $\Delta G^\circ$  for the reaction

(Given :  $E^\circ_{\text{Ag}^+/\text{Ag}} = +0.80\text{ V}$ ,  $E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.76\text{ V}$ )



OR

(a) Define molar conductivity of a solution and explain how molar conductivity changes with change in concentration of solution for a weak and a strong electrolyte.


(b) The resistance of a conductivity cell containing 0.001 M KCl solution at 298 K is 1500  $\Omega$ . What is the cell constant if the

conductivity of 0.001 M KCl solution at 298 K is  $0.146 \times 10^{-3} \text{ S cm}^{-1}$  ?

**Answer :** (a) Lead storage battery is secondary cell and can be recharged by passing current through it.



**Overall cell reaction :**

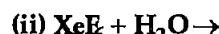


$$(b) E^\circ_{\text{cell}} = 0.8 - (-0.76) = 1.56 \text{ V}$$

$$\begin{aligned} \Delta G^\circ &= -nFE^\circ_{\text{Cell}} \\ &= -2 \times 96500 \times 1.56 \\ &= -301 \text{ kJ mol}^{-1} \end{aligned}$$

OR

(a) Molar conductivity of a solution is the conductance of the solution with one mole of electrolyte placed between electrodes 1 cm apart. With dilution, molar conductivity of weak electrolytes increases sharply and for strong electrolytes also, it increases.

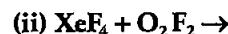
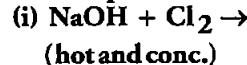

$$(b) k = 0.146 \times 10^{-3} \text{ cm}^{-1} \Omega^{-1}$$

$$R = 1500\Omega$$

$$\text{Specific conductance} = \frac{\text{Cell constant}}{\text{Resistance}}$$

$$\text{Cell constant} = \kappa R = 0.146 \times 10^{-3} \times 1500 \\ = 0.219 \text{ cm}^{-1}$$

29. (a) Complete the following chemical reactions. equations : [2],[3]

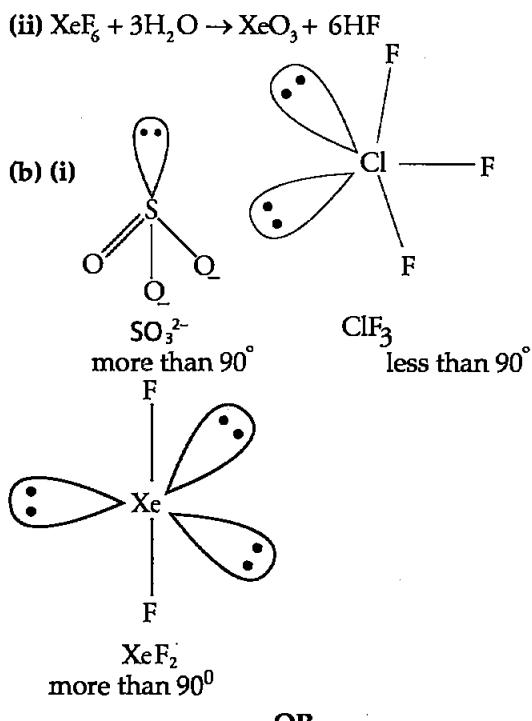




(b) Predict the shape and asked the angle (90° or more or less) in each of the following cases :



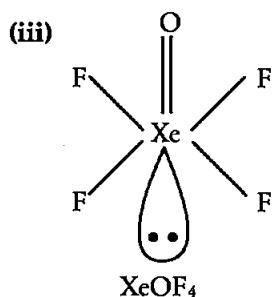
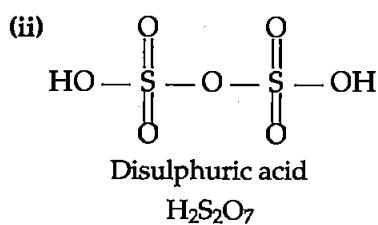
OR

(a) Complete the following chemical equations:




(b) Draw the structures of the following molecules :





\*\* Answer is not given due to change in present syllabus.

**Answer:**



**(a)(i)**  $6\text{NaOH} + 3\text{Cl}_2 \rightarrow 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O}$

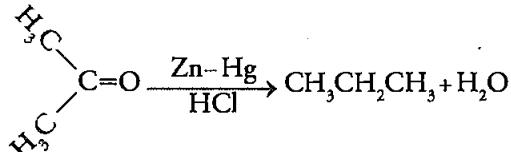
**(ii)**  $\text{XeF}_4 + \text{O}_2\text{F}_2 \rightarrow \text{XeF}_6 + \text{O}_2$



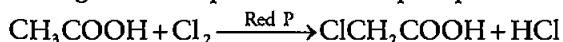
30. (a) Illustrate the following name reactions giving suitable example in each case : [2],[3]

- (i) Clemmensen reduction
- (ii) Hell-Volhard-Zelinsky reaction
- (b) How are the following conversions carried out ?
  - (i) Ethylcyanide to ethanoic acid
  - (ii) Butan-1-ol to butanoic acid
  - (iii) Benzoic acid to *m*-bromobenzoic acid

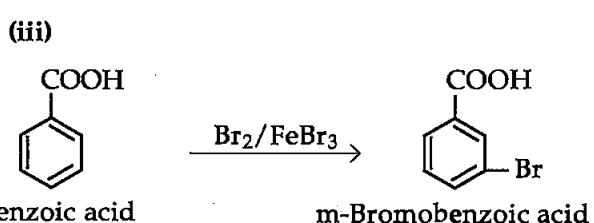
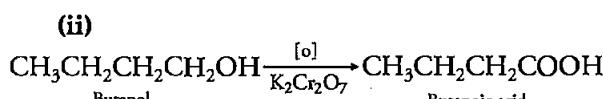
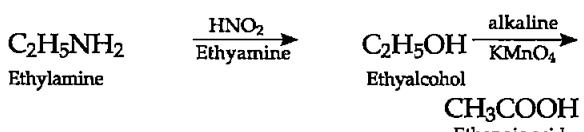
**OR**


(a) Illustrate the following reactions giving a suitable example for each :

(i) Cross aldol condensation, (ii) Decarboxylation

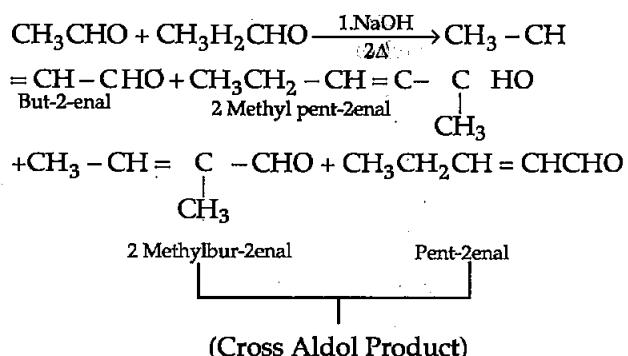

(b) Give simple tests to distinguish between the following pairs of compounds :

(i) Pentan-2-one and Pentan-3-one  
 (ii) Benzaldehyde and Acetophenone  
 (iii) Phenol and Benzoic acid




**Answer :** (a) (i) Aldehydes and ketones are reduced to  $\text{CH}_2$  group on treatment with zinc-amalgam and conc. HCl.



(ii) Carboxylic acids containing  $\alpha$ -hydrogen atom gives halo carboxylic acids on treatment with halogens in the presence of red phosphorous.




(b) (i)



OR

(a) (i) When aldol condensation is carried out between two different aldehydes or ketones it is called cross aldol condensation.

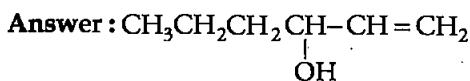






**Chemistry 2012 (Delhi)****SET III**

Time allowed : 3 hours


Maximum marks : 70

**Note :** Except for the following questions, all the remaining questions have been asked in previous sets.

3. Out of  $\text{PH}_3$  and  $\text{H}_2\text{S}$ , which is more acidic and why ? [1]

**Answer :**  $\text{H}_2\text{S}$  is more acidic than  $\text{PH}_3$  due to smaller size and higher electronegativity of sulphur. Therefore S-H bond is polar than P-H bond and easy to remove.

5. Draw the structure of hex-1-en-3-ol compound. [1]



12. Explain the following terms giving one example for each : [2]

(i) Micelles  
(ii) Aerosol.

**Answer :** (i) Micelles are aggregates which exhibit colloidal behaviour at higher concentration, with the hydrophilic part outside and the hydrophobic part towards the oil and dirt particle. e.g., soap.  
(ii) An aerosol is a colloid of fine solid particle or liquid drops in air or another gas. It can be natural or artificial. e.g. dust particle and smoke.

20. 15.0 g of an unknown molecular material was dissolved in 450 g of water. The resulting solution was found to freeze at  $-0.34^\circ\text{C}$ . What is the molar mass of this material ? ( $K_f$  for water =  $1.86 \text{ K kg mol}^{-1}$ ) [3]

**Answer :** Given,

$$W_1 = 15 \text{ g}, W_2 = 450 \text{ g}$$

$$K_f = 1.86 \text{ K kg/mol}$$

$$\Delta T_f = -0.34^\circ\text{C}$$

$$\Delta T_f = \frac{K_f \times W_2 \times 1000}{W_1 \times M_2}$$

$$M_2 = \frac{K_f \times W_2 \times 1000}{W_1 \times \Delta T_f} = \frac{1.86 \times 15 \times 1000}{450 \times 0.34}$$

$$M_2 = 182.35 \text{ g / mol}$$

22. Explain the following observations giving an appropriate reason for each : [3]

(i) The enthalpies of atomization of transition

elements are quite high.

(ii) There occurs much more frequent metal-metal bonding in compounds of heavy transition metals (i.e., 3<sup>rd</sup> series).  
(iii)  $\text{Mn}^{2+}$  is much more resistant than  $\text{Fe}^{2+}$  towards oxidation.

**Answer :** (i) Due to the presence of metallic bonds as a result of large number of valence electrons.

(ii) The presence of valence electrons and unpaired  $d$ -orbital electrons help heavy transition metals to form metallic bonds.

(iii) Due to stability of  $\text{Mn}^{2+}$  because of half filled-subshell ( $3d^5$ ) it does not get oxidized. But  $\text{Fe}^{2+}$  has  $3d^6$  configuration and it can lose one electron to become  $3d^5$  which is stable. Therefore it is easily oxidized.

23. Write the name, the structure and the magnetic behavior of each of the following complexes : [3]

(i)  $(\text{Pt}(\text{NH}_3)\text{Cl}(\text{NO}_2))$ , (ii)  $(\text{Co}(\text{NH}_3)_4\text{Cl}_2)\text{Cl}$

(iii)  $\text{Ni}(\text{CO})_4$

(At. Nos. Co = 27, Ni = 28, Pt = 78)

**Answer :** (i) Amminechloridonitrito-N-platinum (ii), trigonal planar, diamagnetic.

(II) Tetra-ammine dichlorido cobalt (III) chloride, octahedral, diamagnetic

(iii) Tetracarbonyl nickel (0), Tetrahedral, diamagnetic

27. Explain the following terms giving one example of each type: [3]

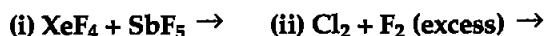
(i) Antacids,  
(ii) Disinfectants,  
(iii) Enzymes.

**Answer :** (i) Substances consumed to reduce acidity in the stomach by neutralizing excess HCl produced by the stomach. e.g. Milk of magnesia.

(ii) Disinfectants are chemicals used to kill microorganism, applied only to non-living objects like floors and drains. e.g. 1% phenol solution.

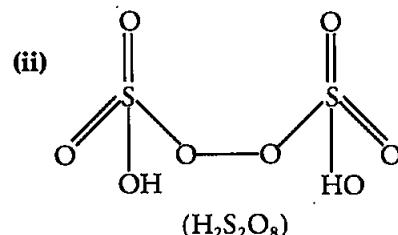
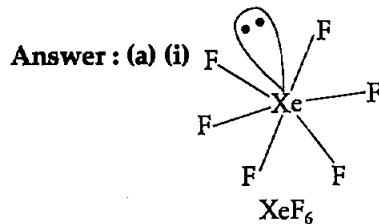
(iii) Enzymes are structurally globular proteins that catalyse biochemical reactions in living organisms e.g. Trypsin.

30. Draw the molecular structures of following compounds : [2],[3]


(i)  $\text{XeF}_6$  (ii)  $\text{H}_2\text{S}_2\text{O}_8$

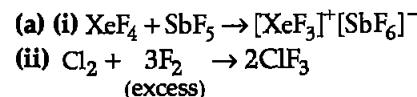
**(b) Explain the following observations :**

- (i) The molecules  $\text{NH}_3$  and  $\text{NF}_3$  have dipole moments which are of opposite direction.\*\*
- (ii) All the bonds of  $\text{PCl}_5$  molecule are not equivalent.\*\*
- (iii) Sulphur in vapour state exhibits paramagnetism.



**OR**

**(a) Complete the following chemical equations:**




**(b) Explain each of the following :\*\***

- (i) Nitrogen is much less reactive than phosphorus.
- (ii) The stability of +5 oxidation state decreases down group 15.
- (iii) The bond angles (O-N-O) are not of the same value in  $\text{NO}_2^-$  and  $\text{NO}_2^+$ .



**(b) (i)** Fluorine is more electronegative than nitrogen while hydrogen is less electronegative than nitrogen resulting in opposite dipole moments of  $\text{NH}_3$  and  $\text{NF}_3$ . Dipole points towards N in  $\text{NH}_3$  and towards F in  $\text{NF}_3$ .

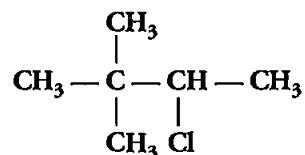
**OR**



• •

Students don't need to purchase any Guide, Question Bank or Sample/model paper from market. All material will be available on this website in the form of free PDFs by 30 September. On website [www.cbsepdf.com](http://www.cbsepdf.com) following materials will be provided :

1. NCERT Solutions
2. Previous Years Papers (2011-2019)
3. Previous Years Chapterwise Question Bank
4. 20 Solved Sample Paper


Students can download from following website

**[www.cbsepdf.com](http://www.cbsepdf.com)**

A mission for free content for all.

**Chemistry 2013 (Outside Delhi)****SET I****Time allowed : 3 hours****Maximum marks : 70**

- Of physisorption or chemisorption, which has a higher enthalpy of adsorption ? [1]  
**Answer :** Chemisorption.
- Name the method used for refining of copper metal. [1]  
**Answer :** Electrolytic refining of copper metal.
- Name two poisonous gases which can be prepared from chlorine gas. [1]  
**Answer :** Chloropicrin or tear gas ( $\text{CCl}_3\text{NO}_2$ ) and phosgene gas ( $\text{COCl}_2$ ).
- Write the IUPAC name of the following compound : [1]



**Answer :** 2-chloro-3, 3-dimethyl butane.

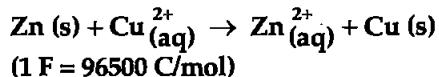
- Rearrange the following compounds in the increasing order of their boiling points: [1]  
 $\text{CH}_3\text{CHO}$ ,  $\text{CH}_3\text{CH}_2\text{OH}_2$ ,  $\text{CH}_3 - \text{CH}_2 - \text{CH}_3$   
**Answer :**  $\text{CH}_3\text{CH}_2\text{CH}_3 < \text{CH}_3\text{CHO} < \text{CH}_3\text{CH}_2\text{OH}$
- Write the structure of N-methylethanamine. [1]  
**Answer :**  $\text{CH}_3 - \underset{\text{H}}{\text{N}} - \text{CH}_2 - \text{CH}_3$

7. What are the products of hydrolysis of sugar ? [1]

Answer : Glucose and fructose.

8. Is  $\text{CH}_2 - \underset{\text{Cl}}{\text{CH}}$  a homopolymer or a copolymer ? [1]

Answer : Homopolymer.


9. Account for the following : \*\* [2]

(i) Schottky defects lower the density of related solids.

(ii) Conductivity of silicon increases on doping it with phosphorus.

10. Aluminium crystallizes in an FCC structure. Atomic radius of the metal is 125 pm, what is the length of the side of the unit cell of the metal ?\*\* [2]

11. The standard electrode potential ( $E^\circ$ ) for Daniell cell is + 1.1 V. Calculate  $\Delta G^\circ$  for the reaction : [2]



Answer : n = 2,  $E^\circ_{\text{cell}} = 1.1$  volt, 1F = 96500 C mol $^{-1}$

$$\Delta_r G^\circ = -nFE^\circ_{\text{cell}}$$

$$= -2 \times 96500 \times 1.1$$

$$= -212.3 \text{ kJ mol}^{-1}$$

12. For a reaction  $\text{A} + \text{B} \rightarrow \text{P}$ , the rate law is given by [2]

$$r = k [\text{A}]^{\frac{1}{2}} [\text{B}]^2$$

(a) What is the order of this reaction ?

(b) A first order reaction is found to have a rate constant  $k = 5.5 \times 10^{-14} \text{ s}^{-1}$ . Find the half life of the reaction.

Answer : (a) Order of reaction =  $\frac{1}{2} + 2 = 5/2$

(b) For first order reaction,

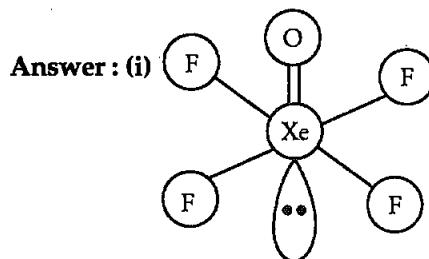
$$\text{Half life (t}_{\frac{1}{2}}\text{)} = \frac{0.693}{k}$$

$$= \frac{0.693}{5.5 \times 10^{-14}} = 1.26 \times 10^{13}$$

13. (a) Name the method used for removing gangue from sulphide ores. [2]

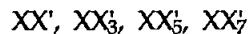
(b) How is wrought iron different from steel ?

Answer : (a) Froth floatation method.

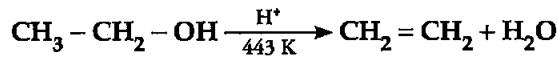

(b) Wrought iron is the purest form of iron with 0.2-0.5% carbon and steel is an alloy of iron. Wrought iron is produced from cast iron.

Steel is an alloy of iron and other elements. It has carbon content of 0.1-1.5%.

They also have different properties, industrial and decorative applications.

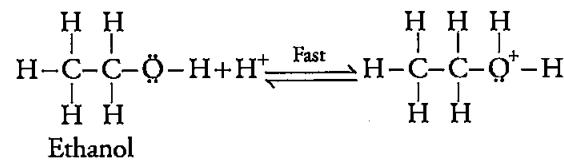

14. Draw the structures of the following molecules:

(i)  $\text{XeOF}_4$  (ii)  $\text{H}_3\text{PO}_3^{**}$  [2]

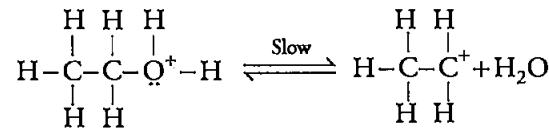



15. How are interhalogen compounds formed ? What general compositions can be assigned to them ? [2]

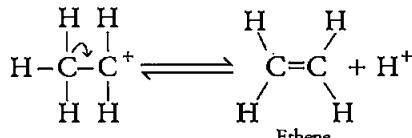
Answer : Interhalogen compounds are formed by direct combination of halogens or by reaction of halogen on lower interhalogen compounds. The general composition of interhalogen compounds are :




16. Explain the mechanism of the following reaction : [2]




Answer : Mechanism : It involves three steps :


1. Formation of protonated alcohol

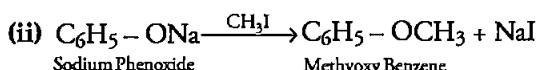
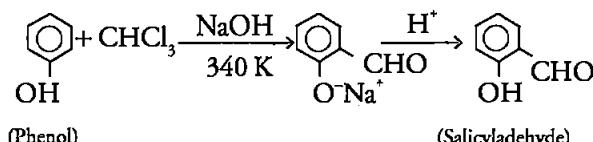


2. Formation of carbocation



3. Formation of ethene by elimination of a proton





17. Write the equations involved in the following reactions : [2]

(i) Reimer-Tiemann reaction

(ii) Williamson ether synthesis

Answer : (i)

\*\* Answer is not given due to change in present syllabus.



18. Define thermoplastic and thermosetting polymers. Give one example of each. [2]

OR

What is a biodegradable polymer? Give an example of biodegradable aliphatic polyester.

**Answer : Thermoplastic Polymers :** They are plastics which becomes soft on heating and can be remoulded. They have less forces e.g. Polythene.

**Thermosetting Polymers :** They do not become soft on heating and cannot be remoulded. They have strong force of attraction e.g. bakelite.

OR

Natural polymers such as starch and cellulose that naturally disintegrate themselves, over a period of time are called biodegradable polymers. Example of biodegradable aliphatic polyester is PHBV (Poly- $\beta$ -hydroxybutyrate-co- $\beta$ -hydroxy Vaterate).

19. The rate of a reaction becomes four times when the temperature changes from 293 K to 313 K. Calculate the energy of activation ( $E_a$ ) of the reaction assuming that it does not change with temperature. [3]

$$[R = 8.314 \text{ J/K mol}^{-1}, \log 4 = 0.6021]$$

**Answer :** Given,

$$T_1 = 293 \text{ K}, T_2 = 313 \text{ K}$$

$$R = 8.314 \text{ J K}^{-1} \text{ Mol}^{-1}$$

$$\log 4 = 0.6021$$

$$E_a = \frac{2.303RT_1T_2 \log \frac{K_2}{K_1}}{T_2 - T_1}$$

$$E_a = \frac{2.303 \times 8.314 \times 293 \times 313}{20} \times \log 4$$

$$E_a = 52.86 \text{ kJ mol}^{-1}$$

20. What are the characteristics of the following colloids? Give one example of each. [3]

(i) Multimolecular colloids    (ii) Lyophobic sols  
 (iii) Emulsions.

**Answer :** (i) On dissolution, a large number of atoms or molecules of a substance aggregate to form colloidal particles. This colloid is called a multimolecular colloid. e.g. Sulphur sol.

(ii) The colloids in which there is no affinity between the particles of dispersed phase and

**\*\*Answer is not given due to change in present syllabus.**

dispersion medium are called lyophobic colloids. They are not stable, that is easily coagulated and irreversible. They are produced only by special methods. e.g.  $\text{As}_2\text{S}_3$  sol,  $\text{Fe}(\text{OH})_3$  sol.

(iii) Emulsions are colloids in which both dispersed phase and dispersing medium are liquid and immiscible with each other e.g. Milk, cod liver oil, etc.

21. Give reasons for the following : [3]

(i) When R is an alkyl group  $R_3\text{P} = 0$  exist but  $R_3\text{N} = 0$  doesn't.

(ii)  $\text{PbCl}_4$  is more covalent than  $\text{PbCl}_2$ .

(iii)  $\text{N}_2$  is much less reactive at room temperature.\*\*

**Answer :** (i) Due to absence of d-orbitals, N cannot form  $p\pi-d\pi$  multiple bonds. Thus, it cannot expand its covalency beyond 4. In  $R_3\text{N} = 0$ , N has covalency 5 so it does not exist. On the other hand, due to presence of d-orbitals, P forms  $p\pi-d\pi$  multiple bonds and expand its covalency beyond 4. In  $R_3\text{P}=0$  covalency of P is 5 hence it exists.

(ii) Because 'Pb' is in +4 oxidation state in  $\text{PbCl}_4$  and has high charge/size ratio than  $\text{Pb}^{2+}$ . According to Fajan's rule, a higher charge on cation or anion makes compound more covalent, +4 state is more stable than +2 state. Hence  $\text{PbCl}_4$  is more covalent than  $\text{PbCl}_2$

22. For the complex  $[\text{NiCl}_4]^{2-}$ , write [3]

(i) the IUPAC name

(ii) the hybridization type

(iii) the shape of the complex

(Atomic no. of Ni = 28)

OR

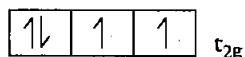
What is meant by crystal field splitting energy? On the basis of crystal field theory, write the electronic configuration of  $d^4$  in terms of  $t_{2g}$  and  $e_g$  in an octahedral field when

(i)  $\Delta_0 > P$

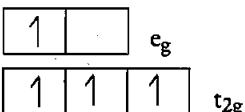
(ii)  $\Delta_0 < P$

**Answer :** (i) Tetrachloridonickelate (II) ion

(ii)  $sp^3$  hybridisation


(iii) Tetrahedral shape.

OR


In octahedral complexes, the d-orbitals split into two sets, one with two orbitals of high energy ( $t_{2g}$ ) and three orbitals with lower energy ( $e_g$ ). The difference in energy levels of these sets is the crystal field splitting energy.

(i) When  $\Delta_0 > P$ , electronic configuration is  $t_{2g}^4 e_g^0$ .





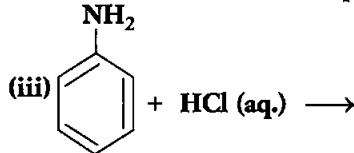
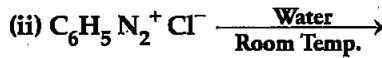
(ii) When  $\Delta_0 < P$ , electronic configuration is  $t_{2g}^3 e_g^1$



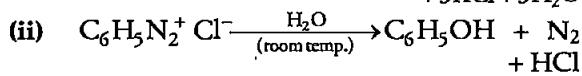
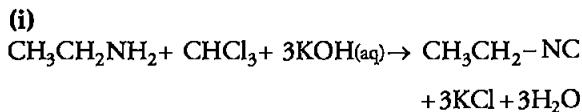
23. Give reasons for the following : [3]

(i) Ethyl iodide undergoes  $S_N2$  reaction faster than ethyl bromide.

(ii) ( $\pm$ ) 2-Butanol is optically inactive.



(iii) C-X bond length in halobenzene is smaller than C-X bond length in  $CH_3-X$ .

Answer : (i)  $I^-$  ion is better leaving group than  $Br^-$  ion, therefore, ethyl iodide reacts faster than ethyl bromide in  $S_N2$  reaction.



(ii) ( $\pm$ ) 2-butanol is optically inactive because it is racemic mixture i.e. it has enantiomers in equal amount and hence they cancel each other's rotation of plane polarised light.

(iii) In halobenzene halogen atom is attached to  $sp^3$  hybridized carbon while in  $CH_3-X$   $sp^2$  hybridized carbon which is smaller in size than  $sp^3$  hybridized carbon attached to the halogen. Therefore C-X bond in halobenzene is shorter than in  $CH_3-X$ .

24. Complete the following reactions : [3]



Answer :



25. (i) What class of drug is Ranitidine ? [3]

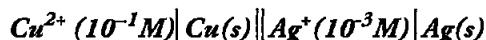
(ii) If water contains dissolved  $Ca^{2+}$  ions, out of soaps and synthetic detergents, which will you use for cleaning clothes ?

(iii) Which of the following is an antiseptic ?

0.2% phenol, 1% phenol

Answer : (i) Antacid.

(ii) Soap gets precipitated in hard water hence it can't be used to wash clothes. On the other hand, synthetic detergents do not precipitate in hard water because its calcium salt is soluble in water. Therefore, it can be used to wash clothes in hard water.


(iii) 0.2% phenol.

26. Calculate the emf of the following cell at  $25^\circ C$  : [3]



Given  $E^\circ_{cell} = +0.46V$  &  $\log 10^n = n$ .

Given cell notation is incorrect correct cell formula is



Answer : According to Nernst equation,

$$\begin{aligned} E_{cell} &= E^\circ_{cell} - \frac{0.0591}{n} \log \frac{[Cu^{2+}]}{[Ag^+]^2} \\ &= 0.46 - \frac{0.0591}{2} \log \frac{10^{-1}}{[10^{-3}]^2} \\ &= 0.46 - \frac{0.591}{2} \log 10^5 \\ &= 0.46 - \frac{0.0591}{2} \times 5 \\ &= 0.46 - 0.14775 \end{aligned}$$

$$E_{cell} = 0.31V$$

27. Shanti, a domestic helper of Mrs. Anuradha, fainted while mopping the floor. Mrs. Anuradha immediately took her to the nearby hospital where she was diagnosed to be severely 'anaemic'. The doctor prescribed an iron rich diet and multivitamins supplement to her. Mrs. Anuradha supported her financially to get the medicines. After a month, Shanti was diagnosed to be normal.

(i) What values are displayed by Mrs. Anuradha ?\*\*

(ii) Name the vitamin whose deficiency causes 'pernicious anaemia'. [3]

(iii) Give an example of a water soluble vitamin.

(ii) Pernicious anaemia is caused due to deficiency of Vitamin  $B_{12}$ .

(iii) Vitamin C and Vitamin B.

28. (a) State Raoult's law for a solution containing volatile components. How does Raoult's law become a special case of Henry's law ?

(b) 1.00 g of a non-electrolyte solute dissolved in 50 g of benzene lowered the freezing

\*\*Answer is not given due to change in present syllabus.

point of benzene by 0.40 K. Find the molar mass of the solute. ( $K_f$  for benzene = 5.12 K kg/mol) [5]

OR

(a) Define the following terms :

- (i) Ideal solution
- (ii) Azeotrope
- (iii) Osmotic pressure.

(b) A solution of glucose ( $C_6H_{12}O_6$ ) in water is labelled as 10% by weight. What would be the molality of the solution ?

(Molar mass of glucose = 180 g/mol)

**Answer :** (a) Raoult's law states that the partial pressure of a vapour of a component in the solution is directly proportional to its mole fraction in the solution.

Raoult's law becomes a special case of Henry's law as it states that the partial pressure of gas in vapour phase is directly proportional to the mole fraction of the gas in the solution.

$$(b) M = \frac{1000 \cdot k_f \cdot w_2}{w_1 \cdot \Delta T_f} = \frac{1000 \times 5.12 \times 1}{50 \times 0.4}$$

$$M = 256 \text{ g}$$

OR

(a) (i) A solution that obeys Raoult's law over all ranges of temperature and concentration and shows no attractive forces between components, is called as ideal solution.

(ii) A liquid mixture which distill at constant temperature without undergoing any change in its composition is called Azeotropes.

(iii) The minimum external pressure required to prevent osmosis is known as osmotic pressure.

(b) Given :

Molecular Mass of Glucose ( $M_B$ ) = 180

% by wt. = ( $W_B$ ) = 10

Molality ( $m$ ) = ?

We know

$$m = \frac{W_B \times 1000}{M_B \times W_A}$$

$$W_A = 100 - 10 = 90$$

$$m = \frac{10 \times 1000}{90 \times 180}$$

$$m = 0.617 \text{ m}$$

29. (a) Give reasons for the following :

- (i)  $Mn^{3+}$  is a good oxidising agent.

(ii)  $E^\circ_{M^{2+}/M}$  values are not regular for first row transition metals (3d series).

(iii) Although 'F' is more electronegative than 'O', the highest Mn fluoride is  $MnF_4$ , whereas the highest oxide is  $Mn_2O_7$ .

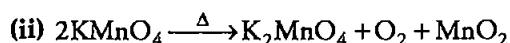
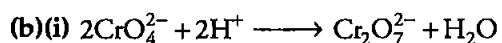
(b) Complete the following equations :



OR

(a) Why do transition elements show variable oxidation states ?

(i) Name the element showing maximum number of oxidation states among the first series of transition metals from Sc ( $Z = 21$ ) to Zn ( $Z = 30$ ).



(ii) Name the element which shows only +3 oxidation state.

(b) What is lanthanoid contraction ? Name an important alloy which contains some of the lanthanoid metals.

**Answer :** (i)  $Mn^{+3}$  has electronic configuration  $3d^4 4s^1$ . It gains one electron on reduction and become  $3d^5 4s^0$  which is half filled stable configuration. Hence it is a good oxidizing agent.

(ii) Due to extra stability of half and fully filled d-orbitals and variations in ionization energies  $E^\circ_{M^{2+}/M}$  values are not regular.

(iii) Due to the ability of oxygen to form multiple bonds with metals and because oxygen stabilizes the highest oxidation state even more than fluorine.



OR

(a) Due to the presence of incomplete d-orbitals, transition elements shows variable oxidation states.

(i) Manganese shows oxidation states from +2 to +7.

(ii) Scandium (Sc).

(b) Lanthanide contraction refers to the steady and regular decrease in atomic size along the period from  $La^{3+}$  to  $Lu^{3+}$  eg. Misch metal alloy which contains 95% lanthanoids and 5% iron.

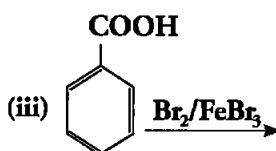
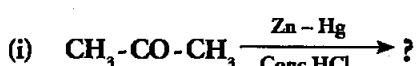
30. (a) How will you convert the following : [5]

\*\*Answer is not given due to change in present syllabus.

(i) Propanone to Propan-2-ol

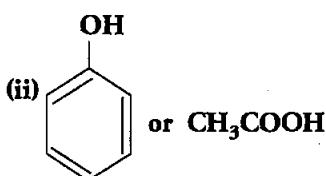
(ii) Ethanal to 2-hydroxy propanoic acid

(iii) Toluene to benzoic acid

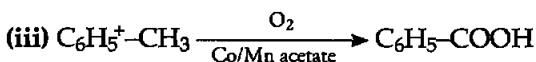


(b) Give simple chemical test to distinguish between :

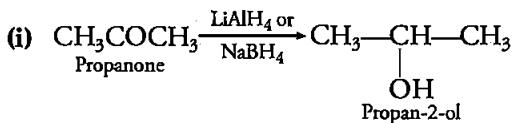
(i) Pentan-2-one and Pentan-3-one

(ii) Ethanal and Propanal


OR

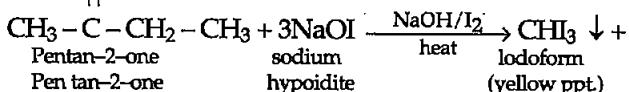
(a) Write the products of the following reactions :



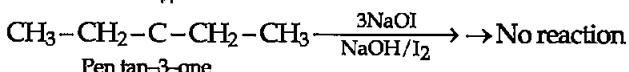



(b) Which acid of each pair shown here would you expect to be stronger ?

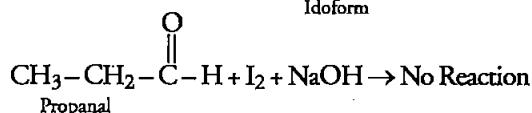
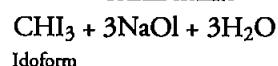
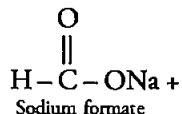
(i)  $\text{F-CH}_2\text{-COOH}$  or  $\text{Cl-CH}_2\text{-COOH}$




Answer : (a)

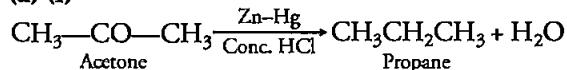



(b) (i) Pentan-2-one gives iodoform test but pentan-3-one does not

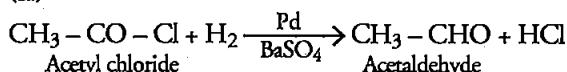



O



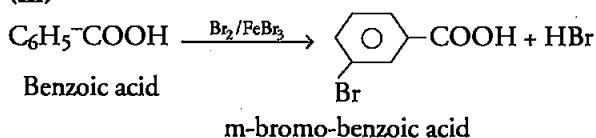
O




(ii) Ethanal gives iodoform test but propanal does not.




OR


(a) (i)



(ii)



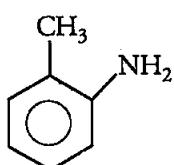
(iii)



(b) (i)  $\text{F-CH}_2\text{-COOH}$  is a stronger acid than  $\text{Cl-CH}_2\text{-COOH}$ , because F is more electronegative than Cl, so it will favour release of  $\text{H}^+$  ion faster by dragging electron density towards itself more as compared to Cl.

(ii) Acetic acid  $\text{CH}_3\text{COOH}$  is stronger acid than phenol. Acetic acid forms carboxylate ion and phenol forms phenoxide ion. Carboxylate ion is more stable than phenoxide ion due to resonance.

**Chemistry 2013 (Outside Delhi)****SET II**


Time allowed : 3 hours

Maximum marks : 70

**Note:** Except for the following questions, all the remaining questions have been asked in previous set.

1. Write the structure of 2-aminotoluene. [1]

Answer :




2. Which aerosol depletes ozone layer ? [1]

Answer : Chlorofluorocarbon (CFCs) present in aerosols depletes ozone layer.

4. Ethanal is soluble in water. Why ? [1]

Answer : Ethanal is soluble in water due to Hydrogen bonding.

5. Write the IUPAC name of the following compound : [1]



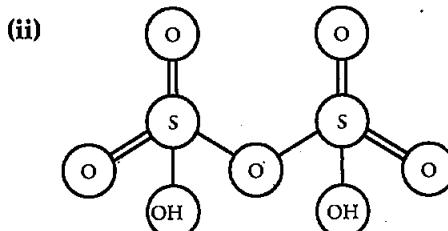
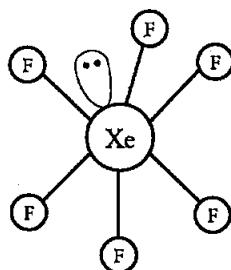
Answer : 2-bromo-4-chloropentane.

7. Write the name of linkage joining two amino acids. [1]

Answer : Peptide linkage.

8. Give one example of a condensation polymer. [1]

Answer : Dacron or Nylon-6, 6.



9. (a) Why does presence of excess of lithium makes LiCl crystals pink ?\*\* [2]

(b) A solid with cubic crystal is made of two elements P and Q. Atoms of Q are at the corners of the cube and P at the body-centre. What is the formula of the compound ?\*\*

14. Draw the structures of the following molecules : [2]

(i)  $\text{XeF}_6$     (ii)  $\text{H}_2\text{S}_2\text{O}_7$

Answer : (i)



18. Outline the principles of refining of metals by the following methods : [2]

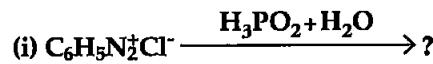
(i) Zone refining    (ii) Vapour phase refining

Answer : (i) This method is based on the principle that the impurities are more soluble in the molten state than in the solid state of metal.

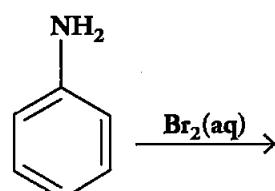
(ii) In this process the metal is converted to its volatile compound, collected elsewhere and then decomposed to give pure metal.

19. Define the following terms giving an example of each : [2]

(i) Associated colloids    (ii) Lyophilic sol


(iii) Adsorption.

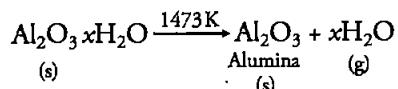
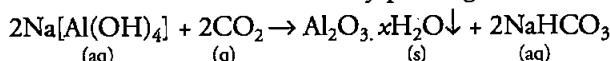
Answer : (i) Associated colloids are colloidal substances which at low concentrations behave as normal electrolytes but at higher concentration they aggregate to form colloids. eg. Soaps and detergents.


(ii) Lyophilic sols are the colloids in which the particles of dispersed phase have a strong affinity for the dispersion medium. They are reversible in nature because on precipitation they can be easily converted back to colloidal form by adding dispersion medium. eg. Starch sol.

(iii) The aggregation of a substance on the surface of liquid or solid is known as adsorption eg. Adsorption of poisonous gases on charcoal.

22. Write the main products of the following reactions : [2]





(ii)



\*\* Answer is not given due to change in present syllabus.



After filtration of impurities sodium meta aluminate is neutralized by passing  $\text{CO}_2$ .



19. Define the following terms with an example in each case : [3]

(i) Macromolecular Sol      (ii) Peptization  
(ii) Emulsion.

**Answer :** (i) **Macromolecular sol :** They are molecules of large size having high molecular masses. Due to long chain, the van der Waals forces are stronger. Eg. rubber, nylon, etc.

(ii) **Peptization :** It is the process of converting a precipitate into colloidal solution by shaking it with dispersion medium in the presence of small amount of electrolyte. E.g. A precipitate of  $\text{AgI}$  can be peptized by shaking with a dilute

solution of silver nitrate.

(iii) **Emulsion :** A type of colloidal solution in which both the dispersed phase and dispersion medium are liquid and are immiscible with each other is called emulsion. Ex. milk.

21. Give reasons for the following : [3]

(i) Though nitrogen exhibits +5 oxidation state, it does not form pentahalide.\*\*  
(ii) Electron gain enthalpy with negative sign of fluorine is less than that of chlorine.  
(iii) The two oxygen-oxygen bond lengths in ozone molecules are identical.  
(ii) Due to small size, fluorine atom has high electro negativity and strong electron – electron repulsions in its compact 2p orbitals, its electron gain enthalpy is less than that of chlorine.  
(iii) The two oxygen bond lengths in ozone are identical due to resonance.

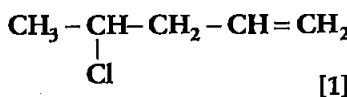
••

## SET I

### Chemistry 2013 (Delhi)

Time allowed : 3 hours

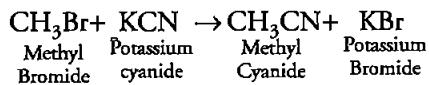
Maximum marks : 70


1. How many atoms constitute one unit cell of a face-centered cubic crystal ?\*\* [1]

2. Name the method used for refining of Nickel metal. [1]

**Answer :** Method used for refining of nickel metal is Mond's process.

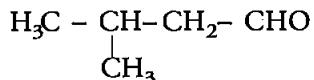
3. What is the covalency of nitrogen in  $\text{N}_2\text{O}_5$ ?\*\* [1]


4. Write the IUPAC name of :



**Answer :** 4-chloropent-1-ene.

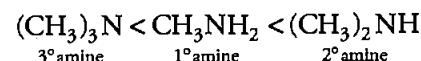
5. What happens when  $\text{CH}_3\text{-Br}$  is treated with  $\text{KCN}$ ? [1]


**Answer :**



It is a nucleophilic substitution reaction.

6. Write the structure of 3-methyl butanal. [1]


**Answer :**



\*\*Answer is not given due to change in present syllabus.

7. Arrange the following in increasing order of their basic strength in aqueous solution :  $\text{CH}_3\text{NH}_2, (\text{CH}_3)_3\text{N}, (\text{CH}_3)_2\text{NH}$  [1]

**Answer :**



8. What are the types of RNA molecule which perform different functions ? [1]

**Answer :** Three types of RNA molecules which perform different functions are :

(i) Messenger RNA (m-RNA)  
(ii) Transfer RNA (t-RNA)  
(iii) Ribosomal RNA (r-RNA)

9. 18 g of glucose,  $\text{C}_6\text{H}_{12}\text{O}_6$  (Molar Mass = 180 g/mol) is dissolved in 1 kg of water in a sauce pan. At what temperature will this solution boil ? [2]  
( $K_b$  for water = 0.52 K kg mol<sup>-1</sup>, boiling point of pure water = 373.15 K)

**Answer :** Given,

$$\text{Weight of solvent (H}_2\text{O)} (W_1) = 1 \text{ kg}$$

$$\text{Weight of solute (C}_6\text{H}_{12}\text{O}_6) (W_2) = 18 \text{ gm}$$

$$\text{Molar mass of solute (M}_2) = 180 \text{ g/mol}$$

$$K_b = 0.52 \text{ K kg mol}^{-1}$$

$$T_b^o = 373.15 \text{ K}$$

We know that

$$\therefore \Delta T_b = \frac{K_b \times 1000 \times W_2}{M_2 \times W_1}$$

$$= \frac{0.52 \times 1000 \times 18}{180 \times 1000}$$

$$= 0.052 \text{ K}$$

$$\therefore \Delta T_b = T_b - T_b^o = 0.052$$

$$0.052 = T_b - 373.15$$

$$T_b = 373.202 \text{ K}$$

Hence, boiling point of solution is 373.202 K

10. The conductivity of 0.20 M solution of KCl at 298 K is 0.025 S cm<sup>-1</sup>. Calculate its molar conductivity. [2]

Answer : Given  $k = 0.025 \text{ S cm}^{-1}$

Molarity, M = 0.20 M

Molar conductivity

$$(\Lambda_m) = \frac{k \times 1000}{M}$$

$$= \frac{0.025 \times 1000}{0.20}$$

$$\therefore \Lambda_m = 125 \text{ S cm}^2 \text{ mol}^{-1}$$

11. Write the dispersed phase and dispersion medium of the following colloidal system : [2]

(i) Smoke (ii) Milk.

OR

What are lyophilic and lyophobic colloids ? Which of these sols can be easily coagulated on addition of small amounts of electrolytes ?

Answer : (i) Dispersed Phase in Smoke : Solid, dispersion medium in smoke : Gas

(ii) Dispersed Phase in Milk : Fats (liquid), dispersion medium in milk: Water (liquid)

OR

Answer : Lyophilic Colloids : These are the colloidal solutions in which dispersed phase has great affinity for dispersion medium. Such solutions are quite stable and are reversible in nature. e.g. starch, proteins, etc.

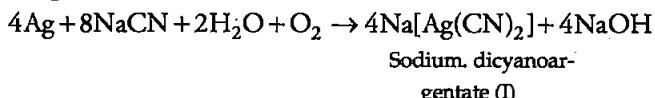
Lyophobic Colloids (Liquid Hating) : These are the colloidal solutions in which dispersed phase has very little affinity for the dispersion medium. Such solutions are unstable and are irreversible in nature. e.g., (As<sub>2</sub>S<sub>3</sub> Sol).

Lyophobic colloids can be easily coagulated because on addition of small amount of electrolyte, the charge on colloidal particles is removed, as a result the particles will come

closer to each other and then aggregate to form a cluster which settle down under the force of gravity.

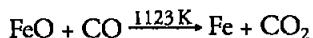
12. Write the differences between physisorption and chemisorption with respect to the following : [2]

(i) Specificity (ii) Temperature dependence  
(iii) Reversibility and (iv) Enthalpy change


Answer :

| S. No. | Point of difference    | Physisorption                                                                               | Chemisorption                                                                                                                                                              |
|--------|------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)    | Specificity            | It is not specific in nature i.e., all gases are adsorbed on all solids to some extent.     | This is highly specific in nature. i.e., it occurs only when there is some possibility of compound formation between the gas being adsorbed and the solid being adsorbent. |
| (ii)   | Temperature dependence | Low temperature is favourable for physisorption. It decreases with increase in temperature. | High temperature is favourable for chemisorptions. It increases with the increase in temperature.                                                                          |
| (iii)  | Reversibility          | It is reversible in nature.                                                                 | It is irreversible in nature.                                                                                                                                              |
| (iv)   | Enthalpy change        | Enthalpy of adsorption is low i.e., 20-40 kJ mol <sup>-1</sup>                              | Enthalpy of adsorption is high i.e., 40-4000 kJ mol <sup>-1</sup>                                                                                                          |

13. (a) Which solution is used for the leaching of silver metal in the presence of air in the metallurgy of silver ?


(b) Out of 'C' and 'CO', which is a better reducing agent at the lower temperature range in the blast furnace to extract iron from the oxide ore ? [2]

Answer : (a) Dilute solution i.e., 0.5% NaCN and KCN is used for leaching of silver metal in the presence of air.

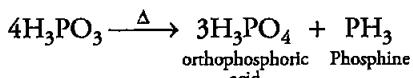


(b) Out of C and CO, CO is a better reducing agent at lower temperature range in the blast furnace to extract iron from the oxide ore because

in Ellingham diagram  $\Delta G_{(CO, CO_2)} < \Delta G_{(Fe, FeO)}$  SO, CO will reduce FeO to Fe and will oxidized to  $CO_2$ .



14. What happens when [2]


(i)  $PCl_5$  is heated ? (ii)  $H_3PO_3$  is heated ?

Write the reaction involved.

Answer : (i)  $PCl_5$  on heating gives  $PCl_3$  and  $Cl_2$ .



(ii)  $H_3PO_3$  on heating gives orthophosphoric acid and phosphine.



15. (a) Which metal in the first transition series ( $3d$  series) exhibits +1 oxidation state most frequently and why ?

(b) Which of the following cations are coloured in aqueous solutions and why ? [2]



(Atomic Nos. Sc = 21, V = 23, Ti = 22, Mn = 25)

Answer : (a) Cu is the only metal in the first transition series ( $3d$  series) which exhibits +1 oxidation state more frequently. This is because the electronic configuration of Cu is  $3d^{10} 4s^1$  and after losing one s electron it acquires a stable  $3d^{10}$  configuration.

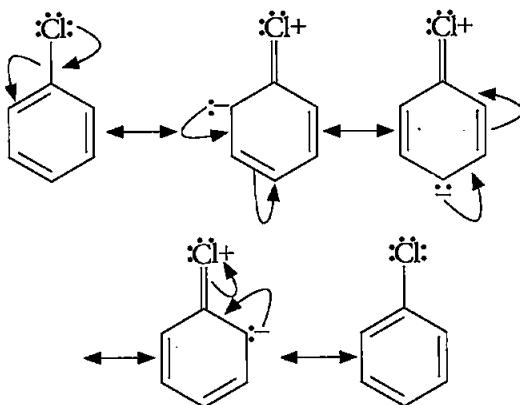
(b) The colour of cations depend upon the number of unpaired electrons present in  $d$ -orbital. The electronic configuration of the following cations is as follows :

Sc (Atomic number 21) =  $3d^1 4s^2$  and  $Sc^{3+} = 3d^0 4s^0$ . As  $d$ -orbital is empty, it is colourless.

V (atomic number 23) =  $3d^3 4s^2$  and  $V^{3+} = 3d^2 4s^0$ . As  $d$ -orbital is having 2 unpaired electrons, it undergoes  $d-d$  transition and depicts green colour.

Ti (Atomic number 22) =  $3d^2 4s^2$  and  $Ti^{4+} = 3d^0 4s^0$ . As 'd' orbital is empty, it is colourless.

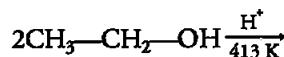
Mn (Atomic number 25) =  $3d^5 4s^2$  and  $Mn^{2+} = 3d^5 4s^0$ . As 'd' orbital has 5 unpaired electrons, it depicts pink colour.


Thus,  $V^{3+}$  and  $Mn^{2+}$  ions are coloured in their aqueous solution due to the presence of unpaired electron.

16. Chlorobenzene is extremely less reactive towards a nucleophilic substitution reaction. Give two reasons for the same. [2]

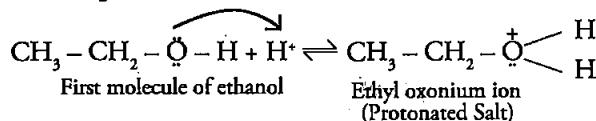
Answer : Chlorobenzene is extremely less reactive towards a nucleophilic substitution

reaction because of the following reasons :

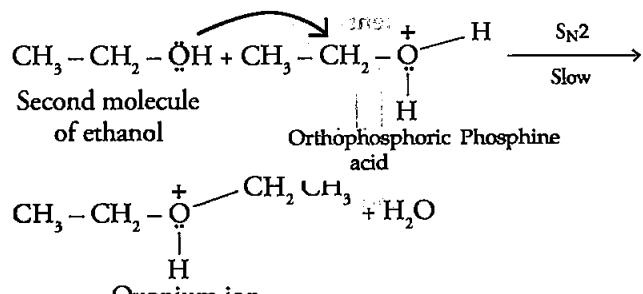

1. **Resonance Effect** : The electron pair on chlorine atom is in conjugation with the benzene-electrons of the benzene ring which results in the following resonating structures :



This results in delocalization of electrons of C-Cl bond and a partial double bond character develops in the bond, which makes it difficult for the nucleophile to cleave the C-Cl bond.


2. The nucleophile suffers repulsion from the increased electron density on the benzene ring as a result the nucleophile is unable to make a close approach for the attack on the molecule.

17. Explain the mechanism of the following reaction: [2]




Answer : The mechanism of the reaction is given below :

**Step 1 : Protonation of alcohol**



**Step 2 : Attack by nucleophile on protonated alcohol molecule**

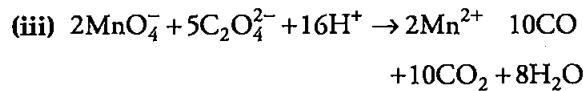
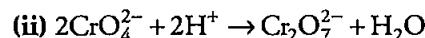


**Step 3 : Loss of proton : to form ethoxy ethane**





**Answer :** (i) The variable oxidation states of transition elements is due to the participation of ns and  $(n-1)d$ -electrons in bonding. Lower oxidation state is exhibited when ns-electrons take part in bonding. Higher oxidation states are exhibited when  $(n-1)d$ -electrons take part in bonding.



(ii) This is because atomic radii of  $4d$  and  $5d$  transition elements are nearly same. This similarity in size is a consequence of lanthanide contraction which is due to weak shielding of  $d$ -electrons. As a result, the radii of Hf becomes nearly equal to that of Zr.

(iii) The catalytic activity of transition elements and their compound is due to the following reasons :

1. Due to their tendency to show variable oxidation state transition metal form instable intermediate compounds and provides a new path for the reaction with lower activation energy.

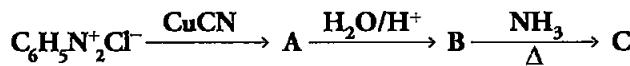
2. In some cases, the transition metals provide a suitable large surface area with free valencies or ion which reactant can adsorbed.

**OR**

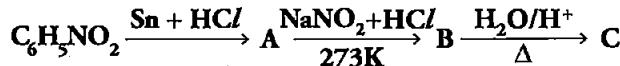


**23. Write the IUPAC names of the following coordination compounds :** [3]

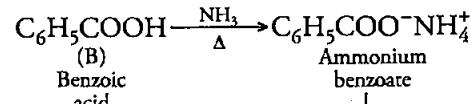
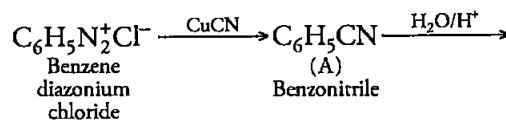



**Answer :** (i) Triamminetrichloridochromium(III)

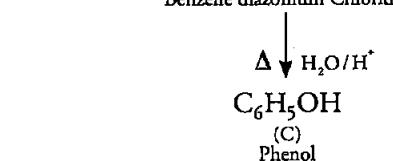
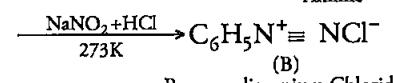
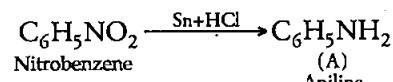
(ii) Potassium hexacyanoferrate(III)


(iii) Dibromidobis-(ethylene-diammine) cobalt (III) ion

**24. Give the structures of A, B and C in the following reactions:** [3]



(i)



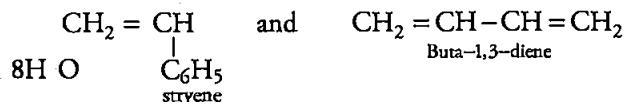



(ii)



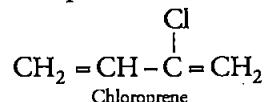
**Answer :** (i)



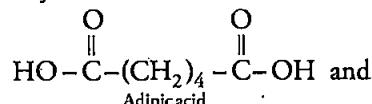
(ii)




**25. Write the names and structures of the monomers of the following polymers :** [3]


(i) Buna-S (ii) Neoprene

(iii) Nylon-6, 6


**Answer :** (i) Buna - S :



(ii) Neoprene :



(iii) Nylon-6, 6 :



**26. After watching a programme on TV about the adverse effects of junk food and soft drinks on the health of school children, Sonali, a student of Class XII, discussed the issue with the principal. Principal immediately instructed the canteen contractor to replace the fast food with the fibre and vitamins rich food like sprouts, salad, fruits etc. This decision was welcomed by the parents and the students. [3]**  
**After reading the above passage, answer the following questions :**

(a) What values are expressed by Sonali and the Principal of the school ?\*\*  
 (b) Give two examples of water-soluble vitamins.

**Answer :**

(b) The two water soluble vitamins are vitamin B and Vitamin C (Ascorbic acid).

27. (a) Which one of the following is a food preservative ? [3]

Equanil, Morphine, Sodium benzoate

(b) Why is bithional added to soap ?

(c) Which class of drugs is used in sleeping pills ?

**Answer :** (a) Sodium benzoate is used as a food preservative whereas equanil is a tranquilizer and morphine is a narcotic analgesic.

(b) Bithional is an antiseptic so it is added to soaps to reduce the odours produced by bacterial decomposition of organic matter on the skin.

(c) Tranquilizers relieve stress, fatigue by inducing sense of well being, so they are used in sleeping pills.

28. (a) A reaction is second order in A and first order in B. [5]

(i) Write the differential rate equation.

(ii) How is the rate affected on increasing the concentration of A three times ?

(iii) How is the rate affected when the concentrations of both A and B are doubled ?

(b) A first order reaction takes 40 minutes for 30% decomposition. Calculate  $t_{1/2}$  for this reaction.

(Given :  $\log 1.428 = 0.1548$ )

**OR**

(a) For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.

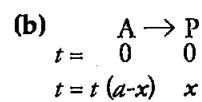
(b) Rate constant 'k' of a reaction varies with temperature 'T' according to the equation :

$$\log k = \log A - \frac{E_a}{2.303R} \left( \frac{1}{T} \right)$$

Where  $E_a$  is the activation energy. When a graph is plotted for  $\log k$  Vs.  $\frac{1}{T}$ , a straight line with a

slope of  $-4250 \text{ K}$  is obtained. Calculate ' $E_a$ ' for the reaction. ( $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ )

**Answer :** (a) (i) A reaction is second order in A and first order in B.


$$\text{Rate} = \frac{-d[R]}{dt} = K[A]^2[B]$$

(ii) On increasing the concentration of 'A' three times i.e.  $3A$ ; the rate of reaction becomes 9 times of the initial rate.

$$\text{Rate} = K[3A]^2[B] = 9K[A]^2[B] = 9 \text{ times rate.}$$

(iii) On increasing the concentration of A and B as  $2A$  and  $2B$ . The rate of reaction becomes 8 times of the initial rate.

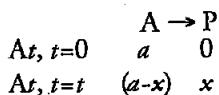
$$\text{Rate} = K[2A]^2[2B] = 8K[A]^2[B] = 8 \text{ times rate}$$



Now, it takes 40 min for 30% decomposition i.e. reactant left after 40 min is 70% of its initial concentration.

$$\text{So, } (a-x) = \frac{70}{100} \times a = \frac{7}{10}a$$

Using the formula,


$$\begin{aligned} &= \frac{2.303}{t} \log \frac{a}{a-x} \\ &= \frac{2.303}{40} \log \frac{a}{(7/10)a} \\ &= 0.00891 \text{ min}^{-1} \end{aligned}$$

$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{0.008913}$$

$$\therefore t_{1/2} = 77.78 \text{ min}$$

**OR**

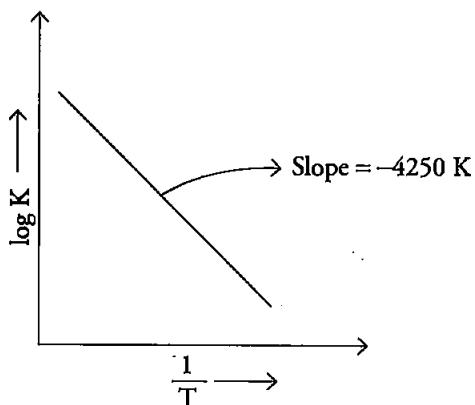
(a) For a first order reaction,



$$t_{99\%} = \frac{2.303}{K} \log \frac{100}{1} \quad \text{eq. (i)}$$

$$t_{90\%} = \frac{2.303}{K} = \frac{100}{10} \quad \text{eq. (ii)}$$

on Comparing eq (i) and (ii)


$$\frac{t_{99\%}}{t_{90\%}} = \frac{\log 100}{\log 1} \quad \therefore t_{99\%} = 2t_{90\%}$$

\*\*Answer is not given due to change in present syllabus.

∴ the time required for 99% completion of 1st order reaction is twice the time required for 90% completion.

(b) We know that,  $\log k = \log A - \frac{E_a}{2.303R} \left( \frac{1}{T} \right)$

The above equation is like  $y = mx + c$ , where if we plot 'y' vs 'x' we get a straight line with slope 'm' and intercept 'c'.



Hence, slope is equal to  $= \frac{-E_a}{2.303 R}$

$$\frac{-E_a}{2.303 R} = -4250 \text{ K}$$

$$\therefore E_a = 4250 \times 2.303 \times 8.314 \text{ (JK}^{-1} \text{ mol}^{-1}\text{)} \\ = 81,375.3535 \text{ Jmol}^{-1}$$

$$E_a = 81.3733 \text{ kJ mol}^{-1}$$

29. (a) Give reasons for the following : [5]

(i) Bond enthalpy of  $F_2$  is lower than that of  $Cl_2$ .

(ii)  $PH_3$  has lower boiling point than  $NH_3$ .\*\*

(b) Draw the structures of the following molecules :

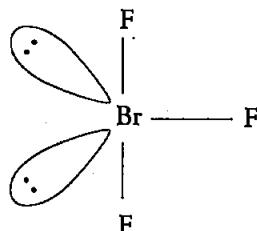
(i)  $BrF_3$       (ii)  $(HPO_3)_3$ \*\*      (iii)  $XeF_4$

OR

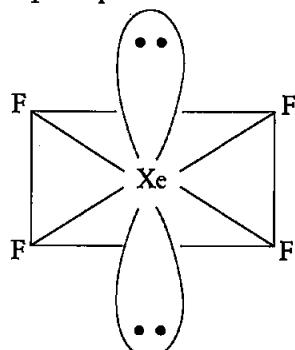
(a) Account for the following :

(i) Helium is used in diving apparatus.

(ii) Fluorine does not exhibit positive oxidation state.


(iii) Oxygen shows catenation behaviour less than sulphur.

(b) Draw the structures of the following molecules.


(i)  $XeF_2$       (ii)  $H_2S_2O_8$

**Answer :** (a) (i) Bond enthalpy of  $F_2$  is lower than that of  $Cl_2$  because 'F' atom is small in size and due to this the electron-electron repulsions between the lone pairs of F-F electrons are very large. Thus, the bond dissociation energy of  $F_2$  is lower than that of  $Cl_2$ .

(b) (i)  $BrF_3$ , Bent T-shape



(iii)  $XeF_4$ , square planar

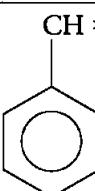


OR

(a)(i) Helium mixed with oxygen under pressure is given to sea-divers for artificial respiration because of its very low solubility in blood. Air is not given because nitrogen present in air being soluble in blood will give a painful sensation called bends by bubbling out blood on moving from high pressure to the atmospheric pressure. Thus, oxygen-helium mixture is used.

(ii) Fluorine being the most electronegative atom does not exhibit positive oxidation state because, it does not have d-orbitals for octet expansion and therefore, it shows only a negative oxidation state of -1.

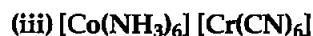
(iii) Oxygen shows catenation behaviour less than sulphur because the oxygen atom is smaller in size as compared to sulphur due to this the lone pair of electron in O-O bonds in oxygen experiences more repulsion as compared to the S-S bonds and thus, S-S forms strong bond.


\*\*Answer is not given due to change in present syllabus.



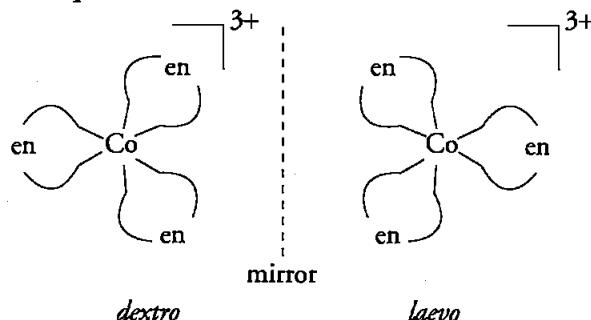





**Answer :** Polymers with their monomers and their structures:

| Polymer         | Monomer                                    | Structure                                                                                                    |
|-----------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| (i) Polystyrene | Styrene (Vinyl benzene)                    | $\text{CH}=\text{CH}_2$<br> |
| (ii) Dacron     | 1. Ethylene glycol<br>2. Terephthalic acid | 1. $\text{HOH}_2\text{C}-\text{CH}_2\text{OH}$<br>2. $\text{HOOC}-\text{C}_6\text{H}_4-\text{COOH}$          |
| (iii) Teflon    | Tetrafluoroethene                          | $\text{CF}_2=\text{CF}_2$                                                                                    |

27. Write the types of isomerism exhibited by the


following complexes :

[3]



**Answer :** (i) Ionisation isomerism

(ii) Optical isomerism



(iii) Coordination isomerism

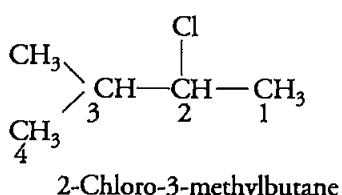
## Chemistry 2013 (Delhi)

SET III

Time allowed : 3 hours

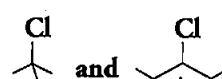
Maximum marks : 70

**Note:** Except for the following questions, all the remaining questions have been asked in previous sets.

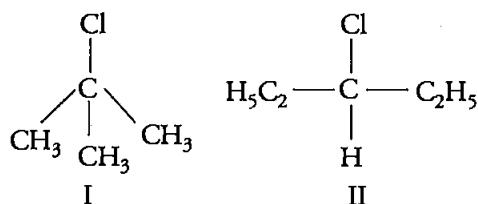

1. What type of substances would make better Permanent Magnets, Ferromagnetic or Ferrimagnetic? \*\*\* [1]

3. What is the composition of 'Copper matte'? [1]  
Answer : Composition of 'Copper matte' is  $\text{Cu}_2\text{S}$  and  $\text{FeS}$ .

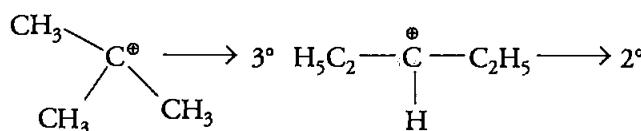
5. What is a glycosidic linkage? [1]  
Answer : The linkage between the two monosaccharide units through oxygen atom accompanied by the loss of a water molecule is called glycosidic linkage.


6. Write the IUPAC name of  $(\text{CH}_3)_2\text{CH}.\text{CH}(\text{Cl})\text{CH}_3$  [1]

**Answer :**




\*\*Answer is not given due to change in present syllabus.

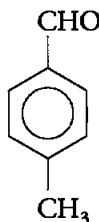

7. Which compound in the following pair undergoes faster  $\text{S}_{\text{N}}1$  reaction? [1]



**Answer :**



The carbocation formed when compounds I and II undergo  $\text{S}_{\text{N}}1$  reaction are shown below :




As  $3^\circ$  carbocation is more stable than  $2^\circ$  carbocation, hence compound I undergoes faster  $\text{S}_{\text{N}}1$  reaction.

8. Write the structure of *p*-Methylbenzaldehyde molecule.

**Answer :**

[1]



9. What is the difference between multi-molecular and macromolecular colloids? Give one example of each. [2]

Answer : Difference between Multi-molecular and Macromolecular colloids :

| Point of Difference | Multi-molecular Colloid                                                                                                                                                                                                                                                   | Macro-molecular Colloid                                                                                                                                                    |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Definition</b>   | When a large number of atoms or small molecules (having diameters of less than 1 nm) of a substance combine together in a dispersion medium to form aggregates having size in the colloidal range, the colloidal solutions thus formed are called multimolecular colloid. | When substances which have very high molecular masses are dispersed in suitable dispersion medium, the resulting colloidal solutions are known as macromolecular colloids. |
| <b>Example</b>      | Gold sol, sulphur sol.                                                                                                                                                                                                                                                    | Starch, cellulose.                                                                                                                                                         |

14. (a) Give an example of zone refining of metals.

(b) What is the role of cryolite in the metallurgy of aluminium? [2]

Answer : (a) Zone Refining of Metals : This method is used for production of semiconductor and other metals of very high purity like germanium, silicon, boron, gallium and indium.

(b) Role of Cryolite in Metallurgy of Aluminium : Cryolite is added to lower the melting point of mixture and to increase the conductivity of electrolyte.

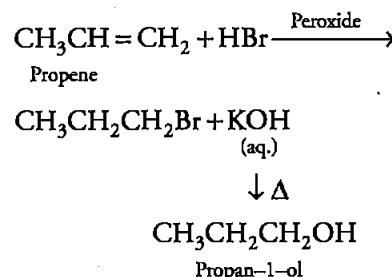
17. Account for the following : [2]

(i) The C—Cl bond length in chlorobenzene is

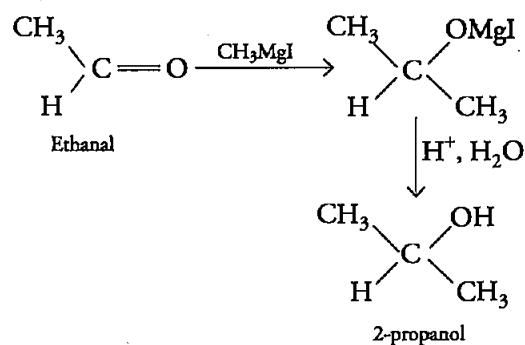
shorter than that in  $\text{CH}_3\text{—Cl}$ .

(ii) Chloroform is stored in closed dark brown bottles.

Answer : (i) This is due to partial double bond character to C—Cl bond (due to resonance in  $\text{C}_6\text{H}_5\text{Cl}$ ).

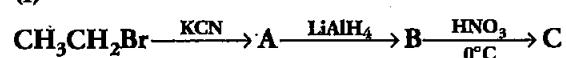

(ii) Chloroform in the presence of air gets oxidized to phosgene. Phosgene is carbonyl chloride and is represented as  $\text{COCl}_2$ . To prevent the formation of phosgene, chloroform is stored in dark coloured bottles. The reaction represented as  $\text{CHCl}_3 + \frac{1}{2}\text{O}_2 \rightarrow \text{COCl}_2 + \text{HCl}$

18. How will you convert : [2]

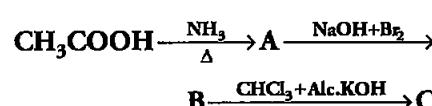

(i) Propene to Propan-1-ol? (ii) Ethanal to Propan-2-ol?

Answer :

(i)

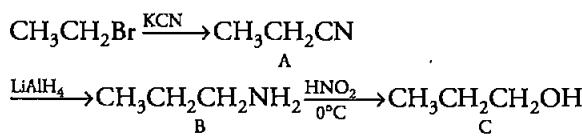



(ii)

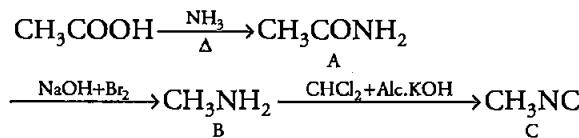



23. Give the structures of products A, B and C in the following reactions : [3]

(i)




(ii)

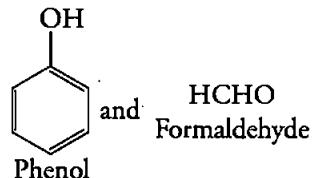



Answer :

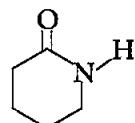
(i)



(ii)




27. Write the names and structures of the monomers of the following polymers : [3]


(i) Bakelite      (ii) Nylon-6      (iii) Polythene

**Answer :**

(i)



(ii)



### Caprolactam

(iii)  $\text{CH}_2=\text{CH}_2$

## Ethene

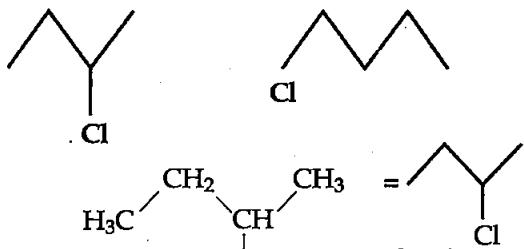
2

**Chemistry 2014 (Outside Delhi)****SET I**

Time allowed : 3 hours

Maximum marks : 70

1. What is the effect of temperature on chemisorption? [1]


**Answer :** Chemisorption initially increases then decreases with rise in temperature. The initial increase is due to the high energy of activation and the decrease afterwards is due to the exothermic nature of adsorption equilibrium.

2. What is the role of zinc metal in the extraction of silver? [1]

**Answer :** Zinc is used as a reducing agent to recover silver from its cyanide complex. It reduces  $\text{Ag}^+$  to  $\text{Ag}$  and itself get oxidised to  $\text{Zn}^{2+}$ .

3. What is the basicity of  $\text{H}_3\text{PO}_3$ ?\*\* [1]

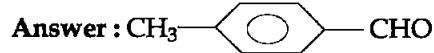
4. Identify the chiral molecule in the following pair: [1]



**Answer :** is chiral due to pairing with four different groups.

5. Which of the following is a natural polymer? [1] Buna-S, Proteins, PVC Economics type

**Answer :** Protein, is a natural polymer having amino acid as a monomer.


6. The conversion of primary aromatic amines into diazonium salts is known as \_\_\_\_\_. [1]

**Answer :** Diazotisation reaction.

7. What are the products of hydrolysis of sucrose? [1]

**Answer :** The products of Hydrolysis of sucrose are : Glucose and Fructose

8. Write the structure of *p*-methylbenzaldehyde. [1]



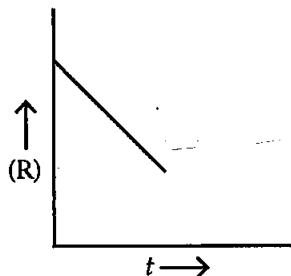
\*\* Answer is not given due to change in present syllabus.

9. An element with density  $2.8 \text{ g cm}^{-3}$  forms a *f.c.c.* unit cell with edge length  $4 \times 10^{-8} \text{ cm}$ . Calculate the molar mass of the element. (Given  $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ )\*\* [2]

10. (i) What type of non-stoichiometric point defect is responsible for the pink colour of  $\text{LiCl}$  ??\*  
 (ii) What type of stoichiometric defect is shown by  $\text{NaCl}$  ??\* [2]

OR

How will you distinguish between the following pairs of terms ??\*


(i) Tetrahedral and octahedral voids  
 (ii) Crystal lattice and unit cell

11. State the Kohlrausch law of independent migration of ions. Why does the conductivity of a solution decreases with dilution ? [2]

Answer : It states that the limiting molar / Conductivity of an electrolyte can be expressed as sum of individual contribution of anion and cation of the electrolyte.

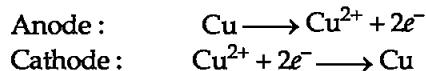
With dilution, the number of ions per unit volume of electrolytes decreases and hence, conductivity decreases.

12. For a chemical reaction  $\text{R} \rightarrow \text{P}$ , the variation in the concentration ( $\text{R}$ ) Vs. time ( $t$ ) plot is given as [2]

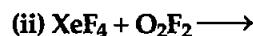


(i) Predict the order of the reaction.

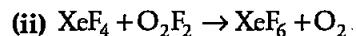
(ii) What is the slope of the curve ?


Answer : (i) Zero order reaction

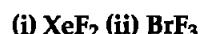
(ii) Slope of the curve is  $(-K)$ . i.e., negative slope.


13. Explain the principle of the method of electrolytic refining of metals. Give one example. [2]

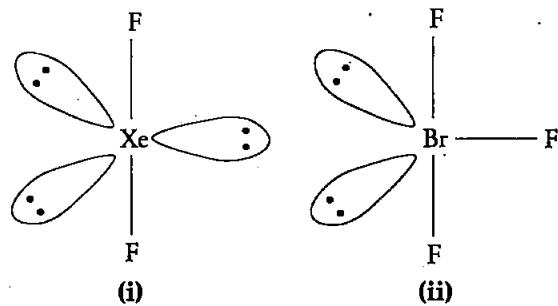
Answer : In electrolytic method, the impure metal is made anode. A strip of the same metal in pure form is used as cathode. They are put in a suitable electrolytic bath containing soluble salt of the same metal. The more basic metal remains in the solution and the less basic ones go to the anode mud.


For e.g. : Copper is refined using an electrolytic method, the net result of electrolysis is the transfer of copper in pure form from the anode to the cathode.




14. Complete the following equations : [2]



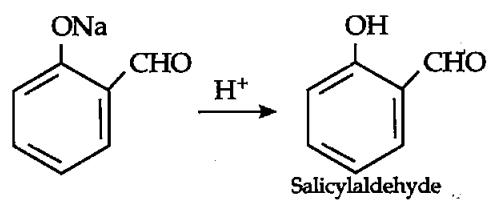
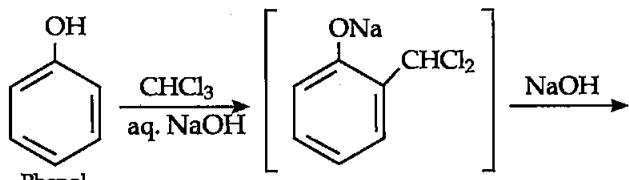

Answer :



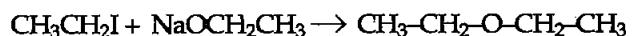
15. Draw the structures of the following : [2]



Answer :

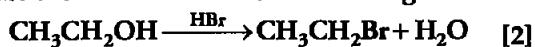




16. Write the equations involved in the following reactions : [2]

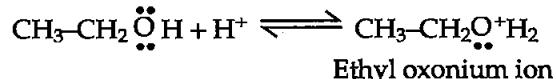

(i) Reimer-Tiemann reaction

(ii) Williamson synthesis

Answer : (i) Reimer Tiemann reaction :

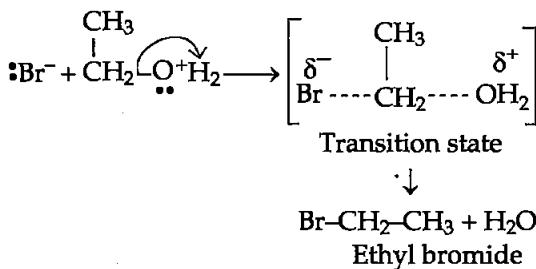



(ii) Williamson synthesis :




Ethyl Iodide Sodium ethoxide Diethyl ether

17. Write the mechanism of the following reaction : [2]




Answer :  $\text{S}_{\text{N}}2$  Mechanism



\*\*Answer is not given due to change in present syllabus.

2.




18. Write the name of monomers used for getting the following polymers : [2]

(i) Bakelite    (ii) Neoprene

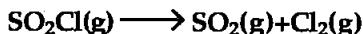
Answer : (i) Phenol and formaldehyde are the monomers used for the formation of Bakelite.

(ii) Chloroprene is the monomer used to prepare Neoprene.

19. (a) Calculate  $\Delta_r G^\circ$  for the reaction



Given :  $E^\circ_{\text{cell}} = 2.71 \text{ V}$ ,  $1 \text{ F} = 96500 \text{ C mol}^{-1}$


(b) Name the type of cell that was used in Apollo space program for providing electrical power. [3]

Answer : (a)  $\text{Mg(s)} + \text{Cu}^{2+}(\text{aq}) \rightarrow \text{Mg}^{2+}(\text{aq}) + \text{Cu(s)}$

$$\begin{aligned} \Delta_r G^\circ &= -nFE^\circ_{\text{cell}} \\ &= -2 \times 96500 \times 2.71 \\ &= -523.03 \text{ kJ mol}^{-1} \end{aligned}$$

(b) Hydrogen-oxygen fuel cells and solar cells.

20. The following data were obtained during the first order thermal decomposition of  $\text{SO}_2\text{Cl}_2$  at a constant volume :



| Experiment | Time ( $\text{s}^{-1}$ ) | Total pressure (atm) |
|------------|--------------------------|----------------------|
| 1          | 0                        | 0.4                  |
| 2          | 100                      | 0.7                  |

Calculate the rate constant. (Given :  $\log 4 = 0.6021$ ,  $\log 2 = 0.3010$ ) [3]

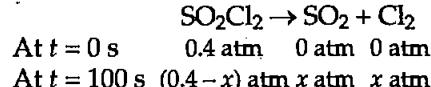
Answer :  $\text{SO}_2\text{Cl}_2\text{(g)} \rightarrow \text{SO}_2\text{(g)} + \text{Cl}_2\text{(g)}$

$$dt_1 \ t = 0 \quad P_0 \dots 0$$

$$At \ t = t \quad P_0 - P \dots P$$

The total pressure of the thermal decomposition of  $\text{SO}_2\text{Cl}_2$  time  $t$ .

$$P_t = (P_0 - P) + P + P$$


$$P_t = P_0 + P$$

$$\text{Hence, } P = P_t - P_0$$

$$\begin{aligned} \therefore P_0 - P &= P_0 - (P_1 - P_0) \\ &= 2P_0 - P_t \end{aligned}$$

\*\* Answer is not given due to change in present syllabus.

We know,



$$P_t = 0.4 - x + x + x = 0.4 + x$$

$$0.7 = 0.4 + x$$

$$x = 0.3$$

for first order reaction.

$$\begin{aligned} K &= \frac{2.303}{t} \log \frac{P_0}{2P_0 - P_t} \\ &= \frac{2.303}{100} \log \frac{0.4}{2 \times 0.4 - 0.7} = \frac{2.303}{100} \log \frac{0.4}{0.1} \\ K &= \frac{2.303 \times 0.602}{100} \\ K &= 1.386 \times 10^{-2} \text{ s}^{-1} \end{aligned}$$

21. What are emulsions ? What are their different types ? Give one example of each type. [3]

Answer : Emulsions are colloids in which both the dispersed phase and dispersing medium are liquid. It is a mixture of two or more liquids that are normally immiscible. They are of two types :

(i) Oil in water type emulsions (O/W) : In such emulsions, oil is the dispersed phase and water is the dispersed medium.

e.g., Milk, Vanishing cream.

(ii) Water in oil type emulsions (W/O) : In such emulsions, water is the dispersed phase and oil is the dispersed medium.

e.g., Butter, Cod liver oil.

22. Given reasons for the following :

(i)  $(\text{CH}_3)_3\text{P} = \text{O}$  exists but  $(\text{CH}_3)_3\text{N} = \text{O}$  does not.\*\*

(ii) Oxygen has less electron gain enthalpy with negative sign than sulphur.

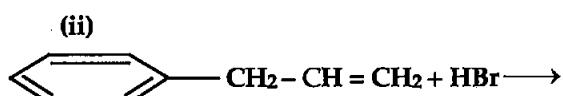
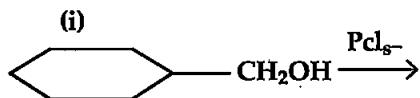
(iii)  $\text{H}_3\text{PO}_2$  is a stronger reducing agent than  $\text{H}_3\text{PO}_3$ .\*\* [3]

(ii) Due to small size and high electronegativity of oxygen compared to sulphur, oxygen has less electron gain enthalpy.

23. (i) Write the IUPAC name of the complex  $[\text{Cr}(\text{NH}_3)_4\text{Cl}_2]\text{Cl}$ .

(ii) What type of isomerism is exhibited by the complex  $[\text{Co}(\text{en})_3]^{3+}$ ? (en = ethane-1, 2-diamine)

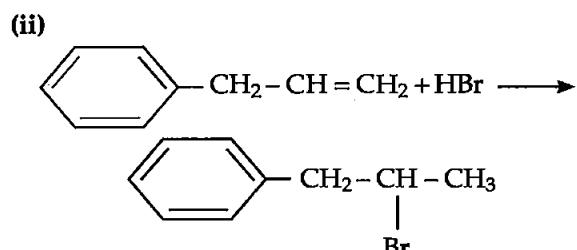
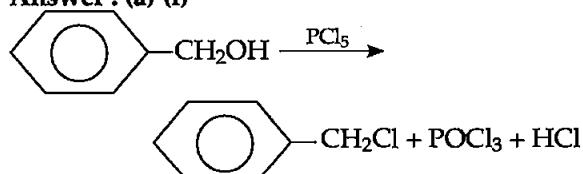
(iii) Why is  $[\text{NiCl}_4]^{2-}$  paramagnetic but  $[\text{Ni}(\text{CO})_4]$  is diamagnetic [3]  
 (At. nos. : Cr = 24, Co = 27, Ni = 28)



Answer : (i) Tetraammine dichlorido chromium(III) chloride

(ii) Optical isomerism is shown by the complex  $[\text{CO}(\text{en})_3]^{3+}$



(iii)  $[\text{Ni}(\text{Cl})_4]^{2-}$ , Ni is in +2 oxidation state with the electronic configuration  $3d^84s^0$ . As  $\text{Cl}^-$  is a weak ligand it cannot pair up the electrons in  $3d$  orbitals therefore,  $[\text{NiCl}_4]^{2-}$  is paramagnetic. In  $[\text{Ni}(\text{CO})_4]$ , Ni is in 0 oxidation state with the electronic configuration  $3d^84s^2$ . Co is a strong ligand it causes  $4s$  electrons to shift to  $3d$  and pair up  $3d$  electrons. Therefore,  $\text{Ni}(\text{CO})_4$  is diamagnetic.



24. (a) Draw the structure of major monohalo products in each of the following reactions :



(b) Which halogen compound in each of the following pairs will react faster in  $S_N2$  reaction :

(i)  $\text{CH}_3\text{Br}$  or  $\text{CH}_3\text{I}$   
 (ii)  $(\text{CH}_3)_3\text{C}-\text{Cl}$  or  $\text{CH}_3-\text{Cl}$  [3]

Answer : (a) (i)

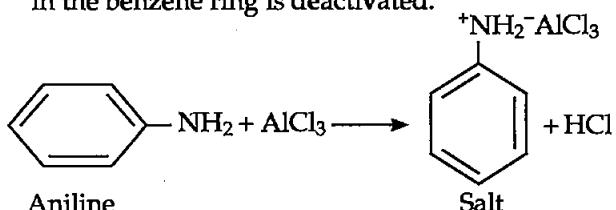


(b) (i)  $\text{CH}_3\text{I}$  will react faster because Iodine (I) is a better leaving group.

(ii)  $\text{CH}_3-\text{Cl}$  will react faster because it is a primary halide and it undergoes  $S_N2$  reaction faster.

25. Account for the following :

(i) Primary amines ( $\text{R}-\text{NH}_2$ ) have higher boiling point than tertiary amines ( $\text{R}_3\text{N}$ ).  
 (ii) Aniline does not undergo Friedel-Crafts reaction.  
 (iii)  $(\text{CH}_3)_2\text{NH}$  is more basic than  $(\text{CH}_3)_3\text{N}$  in an aqueous solution. [3]


OR

Give the structures of A, B and C in the following reactions :

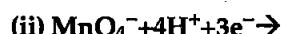
(i)  $\text{C}_6\text{H}_5\text{NO}_2 \xrightarrow{\text{Sn}+\text{HCl}} \text{A} \xrightarrow{\text{NaNO}_2+\text{HCl}} \text{B} \xrightarrow{\text{H}_2\text{O}} \text{C}$   
 (ii)  $\text{CH}_3\text{CN} \xrightarrow{\text{H}_2\text{OH}^+} \text{A} \xrightarrow{\text{NH}_3} \text{B} \xrightarrow[\Delta]{\text{Br}_2+\text{KOH}} \text{C}$

Answer : (i) Due to intermolecular hydrogen bonding in primary amines (presence of more number of H-atoms). They have high boiling point in comparison to tertiary amines.

(ii) Aniline does not undergo Friedel-Crafts reaction because Aniline is basic in nature and reacts with  $\text{AlCl}_3$  to form a salt. The positive charge on the N-atom, electrophilic substitution in the benzene ring is deactivated.



(iii) Due to steric hindrance and solvation effect in case of  $(\text{CH}_3)_3\text{N}$ , it is less basic than  $(\text{CH}_3)_2\text{NH}$  in aqueous solution.



OR

(i)  $\text{C}_6\text{H}_5\text{NO}_2 \xrightarrow{\text{Sn}+\text{HCl}} \text{C}_6\text{H}_5\text{NH}_2$   
 (A)  
 Benzylamine  
 ↓  
 (C)  $\text{C}_6\text{H}_5\text{OH} \xleftarrow{\text{H}_2\text{O}} \text{C}_6\text{H}_5\text{N}_2^+ \text{Cl}^-$   
 (B)  
 Phenol Benzene diazonium chloride

(ii)  $\text{CH}_3\text{CN} \xrightarrow{\text{H}_2\text{O}/\text{H}^+} \text{CH}_3\text{COOH} \xrightarrow[\Delta]{\text{NH}_3} \text{CH}_3\text{CONH}_2$   
 (A) Acetic acid (B) Ethanamide  
 ↓  $\text{Br}_2 + \text{KOH}$   
 (C)  $\text{CH}_3\text{NH}_2$  (C) Methanamine



29. (a) Complete the following equations :

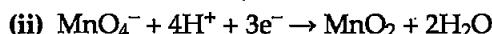
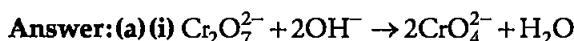


(b) Account for the following :

(i) Zn is not considered as a transition element.  
 (ii) Transition metals form a larger number of complexes.

(iii) The E value for the  $\text{Mn}^{3+}/\text{Mn}^{2+}$  couple is much more positive than that for  $\text{Cr}^{3+}/\text{Cr}^{2+}$  couple. [2,3]

OR



(i) With reference to structural variability and chemical reactivity, write the difference between lanthanoids and actinoids.

(ii) Name a member of the lanthanoid series which is well known to exhibit +4 oxidation state.

(iii) Complete the following equation :

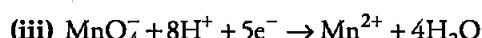


(iv) Out of  $\text{Mn}^{3+}$  and  $\text{Cr}^{3+}$ , which is more paramagnetic and why? (atomic nos : Mn=25, Cr=24) [5]

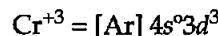
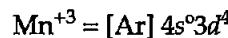


(b) (i) Zinc has  $3d^{10}4s^2$  configuration with no unpaired d-orbital electron and hence it is not considered as a transition element.

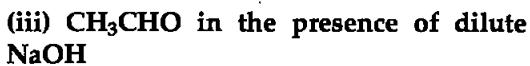
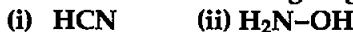
(ii) Transition metals have vacant orbitals to accommodate lone pairs of electrons for bond formation and have high charge density, therefore, they form complexes.


(iii) Due to high stability of  $\text{Mn}^{2+}$  (due to its half-filled 3d sub shell) than  $\text{Mn}^{3+}$  while  $\text{Cr}^{+3}$  is more stable than  $\text{Cr}^{+2}$ .

OR



(i)

| Actinoids                                              | Lanthanoids                                        |
|--------------------------------------------------------|----------------------------------------------------|
| 1. Actinoids have stronger tendency to form complexes. | Lanthanoids form less complexes.                   |
| 2. They show more number of oxidation states.          | They show less number of oxidation states.         |
| 3. They are radioactive.                               | Lanthanoids except promethium are not radioactive. |



(ii) Cerium (Ce) is lanthanoid element, which is well known to exhibit +4 oxidation state.



(iv)  $\text{Mn}^{3+}$  is more paramagnetic as it has four unpaired electrons while  $\text{Cr}^{3+}$  has only three.



30. (a) Write the products formed when  $\text{CH}_3\text{CHO}$  reacts with the following reagents :



(b) Give simple chemical tests to distinguish between the following pairs of compounds.

(i) Benzoic acid and Phenol

(ii) Propanal and Propanone. [3,2]

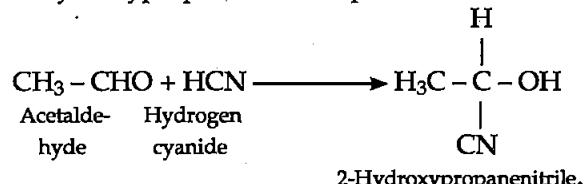
OR

(a) Account for the following: (2, 2, 1)

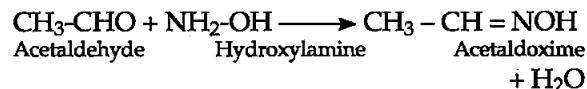
(i)  $\text{Cl}^-\text{CH}_2\text{COOH}$  is a stronger acid than  $\text{CH}_3\text{COOH}$ .

(ii) Carboxylic acids do not give reactions of carbonyl group.

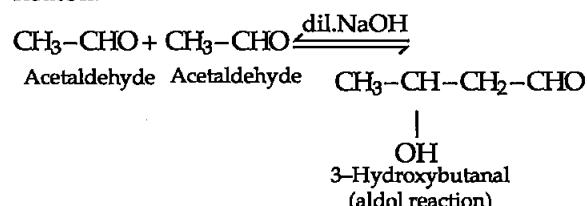
(b) Write the chemical equations to illustrate the following name reactions :


(i) Rosenmund reduction

(ii) Cannizzaro's reaction


(c) Out of  $\text{CH}_3\text{CH}_2-\text{CO-CH}_3$  and

$\text{CH}_3\text{CH}_2-\text{CH}_2-\text{CO-CH}_3$ , which gives iodoform test?


Answer : (a) (i) On reaction of acetaldehyde with hydrogen cyanide it gives 2-Hydroxypropanenitrile as product.



(ii) On reaction of acetaldehyde with Hydroxylamine ( $\text{NH}_2\text{-OH}$ ) it gives acetaldoxime.



(iii) When 2 molecules of acetaldehyde reacts with each other in presence of dil NaOH, 3-Hydroxybutanal is obtained. This is a aldol reaction and further proceeds the reaction when heated.



(b) (i) Phenol reacts with  $\text{FeCl}_3$  to give violet coloured precipitate while benzoic acid give buff coloured precipitate.

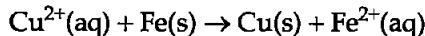
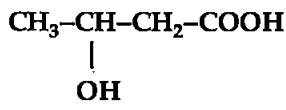
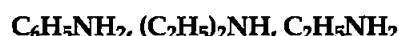




**14. Define the following terms :****(i) Molar conductivity ( $\Lambda_m$ )****(ii) Secondary batteries** [2]**Answer :** (i) Molar conductivity is defined as the conducting power of all the ions produced by dissolving one mole of an electrolyte in solution.

$$\Lambda_m = \frac{K}{C}$$

**(ii) Secondary batteries** are those batteries which can be recharged by passing electric current through them and hence can be used over again e.g. Lead storage battery.**17. Write the principle behind the froth floatation process. What is the role of collectors in this process ?** [2]**Answer :** Froth floatation method has been in use for removing gangue from sulphide ores. In this process, a suspension of the powdered ore is made with water.




Collectors (e.g. pine oils, fatty acids, etc.) enhance non-wettability of the mineral particles and used to skim the froth off the surface.

**23. Define the following terms :** [3]**(i) Nucleotide****(ii) Anomers****(iii) Essential amino acids****Answer :** (i) A Nucleotide contain all the three basic components of nucleic acid i.e., pentose sugar, a nitrogenous base and a phosphoric acid. When nucleoside is linked to phosphoric acid at 5' position of sugar moiety, we get a nucleotide.**(ii) The carbohydrate which differ in configuration at the glycosidic carbon (i.e., C<sub>1</sub> in aldoses and C<sub>2</sub> in ketoses) are called anomers. e.g.  $\alpha$ -D-(+) glucose and  $\beta$ -D-(+) glucose.****(iii) Essential amino acids** are those amino acids which cannot be synthesised by the body and need to be consumed through diet. e.g. Valine.

●●

**Chemistry 2014 (Delhi)****Time allowed : 3 hours****Maximum marks : 70****1. Give one example each of 'oil in water' and 'water in oil' emulsion.** [1]**Answer :** Oil in water – Milk

Water in oil – Butter

**2. Which reducing agent is employed to get copper from the leached low grade copper ore ?** [1]**Answer :** Scrap iron is used as reducing agent to obtain copper metal from the solution containing copper.**3. Which of the following is more stable complex and why ?  $[\text{Co}(\text{NH}_3)_6]^{3+}$  and  $[\text{Co}(\text{en})_3]^{3+}$**  [1]**Answer :**  $\text{NH}_3$  is a unidentate ligand and  $\text{H}_2\text{NCH}_2\text{CH}_2\text{NH}_2(\text{en})$  is a bidentate ligand. Chelating ligands form more stable complexes compared to non-chelating ligands. Thus,  $[\text{Co}(\text{en})_3]^{3+}$  is more stable.**4. Write the IUPAC name of the compound.** [1]**Answer :** 3-hydroxybutan-1-oic acid**5. Which of the following isomers is more volatile: *o*-nitrophenol or *ph*-nitrophenol ?** [1]**Answer :** *o*-nitrophenol is more volatile because of the presence of intra-molecular hydrogen bonding.**6. What are isotonic solutions ?** [1]**Answer :** Two or more solutions having same osmotic pressure are called isotonic solutions. e.g. 0.5 M NaCl, 0.5 M KCl and 1M glucose are isotonic.**7. Arrange the following compounds in increasing order of solubility in water :** [1]**Answer :**  $\text{C}_6\text{H}_5\text{NH}_2 < (\text{C}_2\text{H}_5)_2\text{NH} < \text{C}_2\text{H}_5\text{NH}_2$ **8. Which of the two components of starch is water soluble ?** [1]**Answer :** Amylose is the water soluble component of starch between Amylose and Amylopectin.**9. An element with density  $11.2 \text{ gm cm}^{-3}$  forms f.c.c. lattice with edge length  $4 \times 10^{-8} \text{ cm}$ . Calculate the atomic mass of the element. (Given  $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ )\*\*** [2]

\*\* Answer is not given due to change in present syllabus.

## 10. Examine the given defective crystal\*\*

|       |       |       |       |       |
|-------|-------|-------|-------|-------|
| $A^+$ | $B^-$ | $A^+$ | $B^-$ | $A^+$ |
| $B^-$ | O     | $B^-$ | $A^+$ | $B^-$ |
| $A^+$ | $B^-$ | $A^+$ | O     | $A^+$ |
| $B^-$ | $A^+$ | $B^-$ | $A^+$ | $B^-$ |

Answer the following questions :

- What type of stoichiometric defect is shown by crystal ?
- How is the density of the crystal affected by this defect ?
- What type of ionic substances show such defect ?

11. Calculate the mass of compound (molar mass =  $256 \text{ g mol}^{-1}$ ) to be dissolved in 75 g of benzene to lower its freezing point by  $0.48 \text{ K}$  ( $K_f = 5.12 \text{ K kg mol}^{-1}$ ). [2]

Answer : Given,  $M_B = 256 \text{ g mol}^{-1}$ ,  $W_A = 75 \text{ g}$

$$K_f = 5.12 \text{ kg mol}^{-1}, \Delta T_f = 0.48 \text{ K}$$

From the formula,

$$\Delta T_f = K_f \times \frac{W_B}{M_B} \times \frac{1000}{W_A}$$

$$\begin{aligned} \text{Mass of solute, } W_B &= \frac{\Delta T_f \times M_B \times W_A}{K_f \times 1000} \\ &= \frac{0.48 \times 256 \times 75}{5.12 \times 1000} \\ &= \frac{(0.48)(256 \text{ g mol}^{-1})(0.075 \text{ kg})}{(5.12 \text{ K kg mol}^{-1})} \\ &= 1.8 \text{ g} \end{aligned}$$

12. Define an ideal solution and write one of its characteristics. [2]

Answer : A solution which obeys Raoult's law at all temperatures and concentrations is called an ideal solution.

For an ideal solution,

$$P = P_A + P_B$$

$$P_A = P_A^0 \times X_A$$

$$P_B = P_B^0 \times X_B$$

$$\therefore P = P_A^0 \times X_A + P_B^0 \times X_B$$

Where,  $P$  = Total pressure and  $P_A$ ,  $P_B$ ,  $P_A^0$ ,  $P_B^0$  and  $X_A$ ,  $X_B$  are partial pressure, pressure of pure component and mole fraction of component A and B respectively.

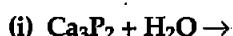
**Characteristics :** In ideal solution, no volume or enthalpy change takes place while mixing to form such a solution, i.e.,  $\Delta H_{\text{mix}} = 0$  and  $\Delta V_{\text{mix}} = 0$ .

[2] 13. Write two differences between 'order of reaction' and 'molecularity of reaction'. [2]

Answer :

| Molecularity                                                                   | Order of Reaction                                                                                    |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 1. It is the number of reacting species taking part in an elementary reaction. | It is equal to the sum of all the exponents of all the reactants present in the rate law expression. |
| 2. It is a theoretical concept and cannot be zero or fractional.               | It is determined experimentally and can be equal to zero or can have fractional value.               |

14. Outline the principles behind the refining of metals by the following methods : [2]


(i) Zone refining method

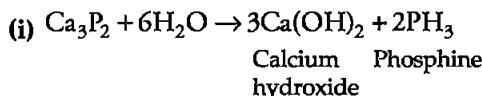
(ii) Chromatographic method

Answer : (i) **Zone refining Method** : This method is employed when impurities are more soluble in the melt than in solid form of the metal. It is used to obtain metals such as Germanium (Ge), Silicon (Si), Gallium (Ga), etc in their purest form.

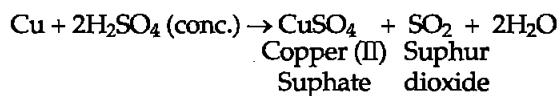
(ii) **Chromatographic Method** : This method is used when the impurities are not very different in chemical properties from the element to be purified. The components of the mixture show different mobility on the stationary phase, i.e., the components are adsorbed differently on the adsorbent.

15. Complete the following chemical equations : [2]




OR

Arrange the following in order of property indicated against each set :


(i) HF, HCl, HBr, HI : increasing bond dissociation enthalpy

(ii)  $\text{H}_2\text{O}$ ,  $\text{H}_2\text{S}$ ,  $\text{H}_2\text{Se}$ ,  $\text{H}_2\text{Te}$  : increasing acidic character.

Answer :



(ii)



\*\* Answer is not given due to change in present syllabus.



(c) Based on type of particles of dispersed phase, give one example each of associated colloid and multimolecular colloid.

**Answer :** (a) Expression for Freundlich adsorption isotherm-

$$\frac{x}{m} = kp^{\frac{1}{n}} \text{ (where } n > 1) \text{ Or}$$

$$\log \left( \frac{x}{m} \right) = \log k + \frac{1}{n} \log p$$

Where,  $x$  = mass of the gas adsorbed (adsorbate)  
 $m$  = mass of the adsorbent (solid)

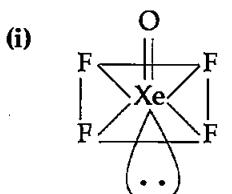
$p$  = pressure of the gas

$n$  and  $k$  are constants, which depend on the nature of the adsorbate and adsorbent.

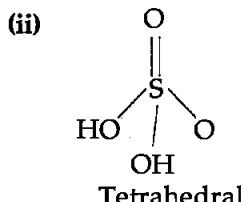
(b) Lyophilic sols are stable and reversible in nature

(c) Associated colloid : Soap solution or detergent solution.

**Multimolecular colloid:** Sulphur sol or Gold sol.


20. (a) Draw the structures of the following molecules : [3]

(i)  $\text{XeOF}_4$

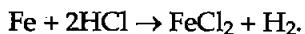

(ii)  $\text{H}_2\text{SO}_4$

(b) Write the structural difference between white phosphorus and red phosphorus\*\*

**Answer :** (a)

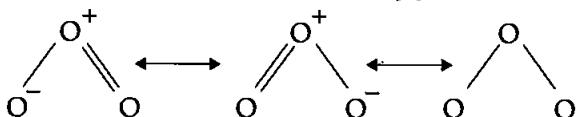


Square pyramidal



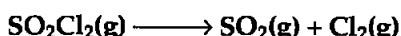

Tetrahedral

21. Account for the following : [3]


- $\text{PCl}_5$  is more covalent than  $\text{PCl}_3$ .\*\*
- Iron on reaction with  $\text{HCl}$  forms  $\text{FeCl}_2$  and not  $\text{FeCl}_3$ .
- The two O-O bond lengths in the ozone molecule are equal.

**Answer :** (ii) As  $\text{HCl}$  is a mild oxidising agent and thus the hydrogen gas produced in the reaction prevents further oxidation of  $\text{Fe}^{2+}$  to  $\text{Fe}^{3+}$ .




\*\*Answer is not given due to change in present syllabus.

(iii) An ozone molecule is a resonance hybrid of the molecule in which there is single bond with one terminal oxygen and double bond with other terminal oxygen of the central oxygen atom.



So, neither single or double bond is pure. Thus both O-O bond lengths are equal.

22. The following data were obtained during the first order thermal decomposition of  $\text{SO}_2\text{Cl}_2$  at a constant volume : [3]



| Experiment | Time/s <sup>-1</sup> | Total pressure/ atm |
|------------|----------------------|---------------------|
| 1          | 0                    | 0.4                 |
| 2          | 100                  | 0.7                 |

Calculate the rate constant.

(Given :  $\log 4 = 0.6021$ ,  $\log 2 = 0.3010$ )

**Answer :**  $\text{SO}_2\text{Cl}_2 \rightarrow \text{SO}_2 + \text{Cl}_2$

$$\text{At } t = 0 \quad 0.4 \quad 0 \quad 0$$

$$\text{At } t = 100 \quad 0.4 - x \quad x \quad x$$

$$P_t = 0.4 - x + x + x$$

$$0.7 = 0.4 + x$$

$$x = 0.3$$

$$\begin{aligned} K &= \frac{2.303}{t} \log \frac{P_0}{2P_0 - P_t} \\ &= \frac{2.303}{100} \log \frac{0.4}{2 \times 0.4 - 0.7} \\ &= \frac{2.303}{1000} \log \frac{0.4}{0.1} \end{aligned}$$

$$K = \frac{2.303 \times 0.602}{100}$$

$$= 1.38 \times 10^{-2} \text{ s}^{-1}$$

23. (i) Give two examples of macromolecules that are chosen as drug targets. [3]

(ii) What are antiseptics ? Give an example.

(iii) Why is use of aspartame limited to cold foods and soft drinks ?

**Answer :** (i) Proteins, enzymes, nucleic acids and lipids are called drug targets as drug interacts with these macromolecules.

(ii) Antiseptics are the chemical substances which prevent the growth of micro-organism and are capable of killing them without harming the human tissues. These are applied on wounds, ulcer, cuts and diseased skin surfaces, e.g. savlon, 0.2% solution of phenol, dettol, iodine tincture etc.

(iii) Aspartame decomposes on heating hence it is used as an artificial sweetner for foods and soft drinks at low temperatures.

24. (i) Deficiency of which vitamin causes night-blindness?

(ii) Name the base that is found in nucleotide of RNA only.

(iii) Glucose on reaction with HI gives n-hexane. What does it suggest about the structure of glucose? [3]

Answer : (i) Vitamin A.

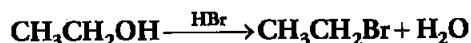
(ii) Uracil

(iii) Glucose exists in acyclic straight six membered carbon chain  $\Rightarrow$  open structure of Glucose.



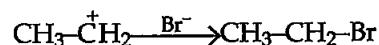
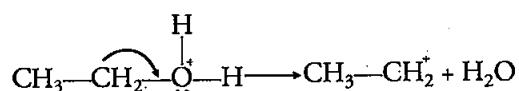
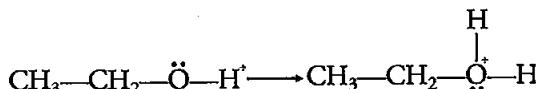
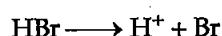
25. After the ban on plastic bags, students of a school decided to make the people aware of the harmful effects of plastic bags on the environment and Yamuna River. To make the awareness more impactful, they organized rally by joining hands with other schools and distributed paper bags to vegetable vendors, shopkeepers and departmental stores. All the students pledged not to use polythene bags in the future to save the Yamuna River. [3]

After reading the above passage, answer the following questions :


- What values are shown by the students?\*\*
- What are bio-degradable polymers? Give one example.
- Is polythene a condensation or the addition polymer?

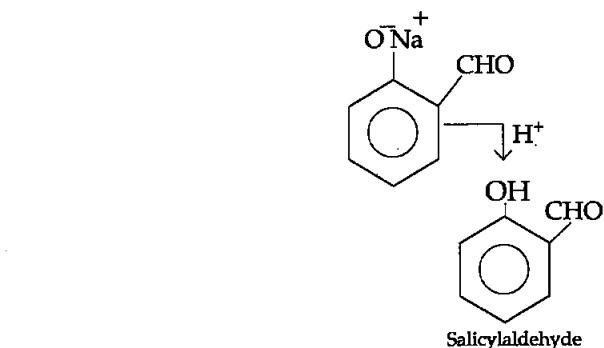
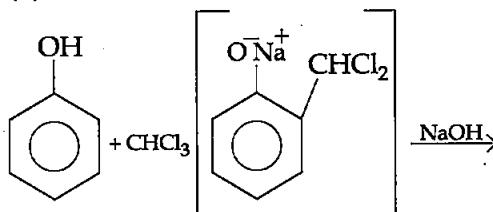
Answer :

(ii) Polymers that are decomposed over a period of time either by itself or by the action of micro-organisms are called biodegradable polymers. PHBV (Poly  $\beta$ -hydroxy butrate Co- $\beta$ -hydroxy valerate)





(iii) Polythene is an addition polymer.

26. (a) Write the mechanism of the following reaction : [3]





(b) Write the equation involved in Reimer-Tiemann reaction.

Answer : (a) Mechanism of the reaction



This is an  $S_N2$  reaction mechanism.

(b)



Reimer-Tiemann reaction

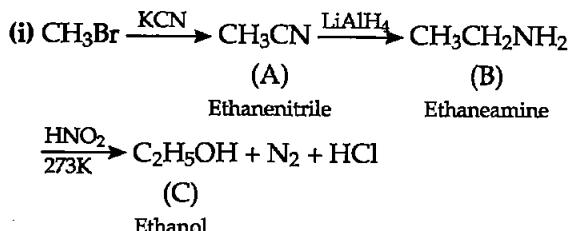
27. Give the structures of A, B and C in the following reactions : [3]



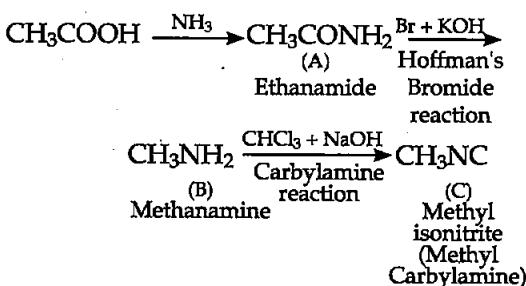
(ii)



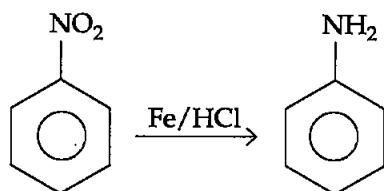
OR


How will you convert the following?

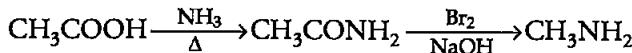
(i) Nitrobenzene into aniline.


(ii) Ethanoic acid into methanamine.

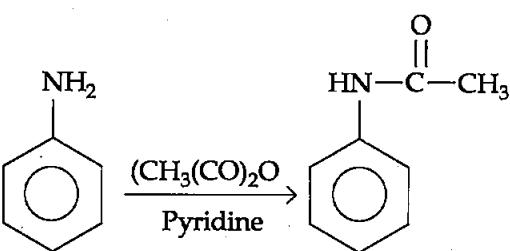
(iii) Aniline into N-phenylethanamide.


(Write the chemical equations involved.)

**Answer :**


(ii)

**OR**


(i) Nitrobenzene to Aniline



(ii) Ethanoic acid into methanamine



(iii) Aniline into N-Phenylethanamide



28. (a) Define the following terms : [2,3]

- (i) Limiting molar conductivity
- (ii) Fuel cell

(b) Resistance of a conductivity cell filled with 0.1 mol L<sup>-1</sup> KCl solution is 100 Ω. If the resistance of the same cell when filled with 0.02 mol L<sup>-1</sup> KCl solution is 520 Ω, calculate the conductivity and molar conductivity of 0.02 mol L<sup>-1</sup> KCl solution. The conductivity of 0.1 mol L<sup>-1</sup> KCl solution is  $1.29 \times 10^{-2} \Omega^{-1} \text{cm}^{-1}$ .

**OR**

(a) State Faraday's first law of electrolysis. How much charge in terms of Faraday is required for the reduction of 1 mol of Cu<sup>2+</sup> to Cu.

(b) Calculate *emf* of the following cell at 298 K :

$$\text{Mg(s)} \mid \text{Mg}^{2+}(0.1\text{M}) \mid \mid \text{Cu}^{2+}(0.01\text{M}) \mid \text{Cu(s)}$$

[Given  $E^\circ_{\text{cell}} = +2.71 \text{ V}$ ,  $1 \text{ F} = 96500 \text{ C mol}^{-1}$ ]

[5]

**Answer :** (a) (i) The limiting molar conductivity is the molar conductivity of a solution when the concentration approaches zero (infinite dilution, C → 0).

(ii) A fuel cell is a galvanic cell in which the heat energy of the fuel is directly converted into electrical energy.

(b) Given,  $R_1 = 100\Omega$

$$C_1 \text{ (Concentration of KCl solution)} = 0.1 \text{ mol L}^{-1}$$

$$K_1 = 1.29 \times 10^{-2} \Omega^{-1} \text{cm}^{-1}$$

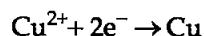
$$R_2 = 520\Omega$$

$$C_2 \text{ (Concentration of KCl solution)} = 0.02 \text{ mol L}^{-1}$$

$$\begin{aligned} \text{Cell constant (G)} &= \text{conductivity} \times \text{resistance} \\ &= 1.29 \times 10^{-2} \Omega^{-1} \text{cm}^{-1} \times 100\Omega \\ &= 1.29 \text{ cm}^{-1} \end{aligned}$$

∴ Conductivity (K<sub>2</sub>)

$$\begin{aligned} &= \frac{\text{Cell constant}}{\text{Resistance}} \\ &= \frac{1.29 \text{ cm}^{-1}}{520\Omega} = 2.48 \times 10^{-3} \Omega^{-1} \text{cm}^{-1} \end{aligned}$$


Molar Conductivity (Λ<sub>m</sub>)

$$\begin{aligned} &= \frac{K_2 \times 1000}{C_2} \\ &= \frac{2.48 \times 10^{-3} \times 1000 \text{ Scm}^{-1}}{0.02 \text{ mol cm}^{-3}} \\ &= 1.24 \times 10^2 \text{ or } 124 \text{ Scm}^2 \text{ mol}^{-1} \end{aligned}$$

**OR**

(a) The mass of substance deposited or liberated at any electrode is proportional to the quantity of electric charge passed through an electrolysis cell.

Reduction of 1 mol of Cu<sup>2+</sup> to 2 moles Cu

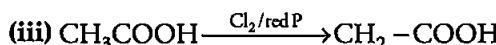
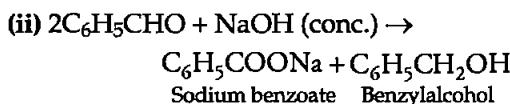
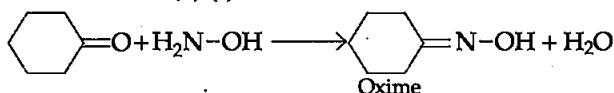


1 mole      2 moles

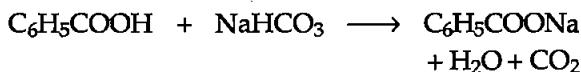
One mole of electrons carry 1F charge. Since 2



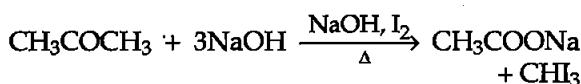
(i)  $\text{CH}_3\text{CHO}$  is more reactive than  $\text{CH}_3\text{COCH}_3$  towards reaction with HCN.




(ii) Carboxylic acid is a stronger acid than phenol.

(b) Write the chemical equations to illustrate the following name reactions :


(i) Wolff-Kishner reduction      (ii) Aldol condensation

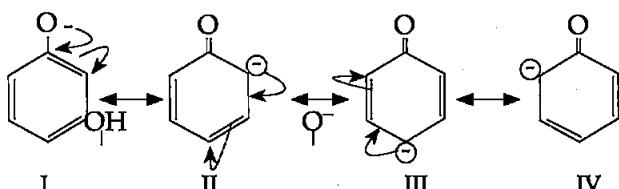
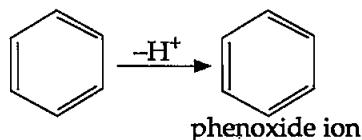
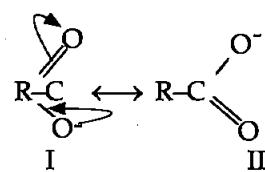
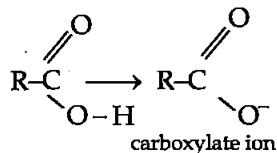
(iii) Cannizzaro reaction


Answer : (a) (i)



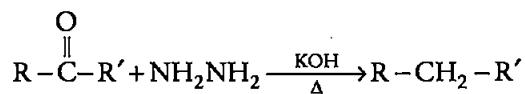
(b) (i) Benzoic acid reacts with  $\text{NaHCO}_3$  to produce effervescence of  $\text{CO}_2$  gas but benzaldehyde does not







(ii) Propanone gives iodoform test but propanal does not because propanone has  $\text{CH}_3\text{CO}-$  group



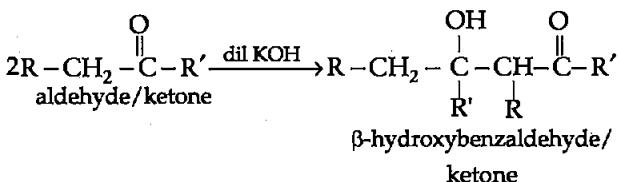
OR


(a) (i)  $\text{CH}_3\text{CHO}$  is more reactive than  $\text{CH}_3\text{COCH}_3$  because the reactivity of compound depends on the steric hindrance due to the groups present around the carbonyl group. More the steric hindrance, less will be the reactivity of the compound. Therefore, due to the presence of more electrophilic carbonyl carbon in  $\text{CH}_3\text{CHO}$ , it is more reactive than  $\text{CH}_3\text{COCH}_3$ .

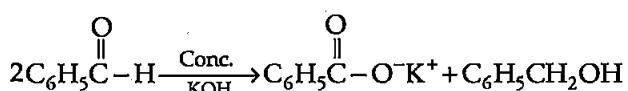
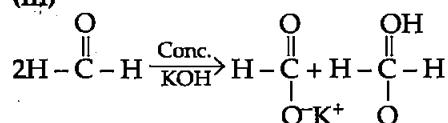
(ii) Carboxylic acid is stronger than phenol because of resonance, stabilisation of more electronegative oxygen atom in carboxylate ion than carbon atom in phenoxide ion.



The reason for greater stability of carboxylate ion is that it involves equivalent resonance in which negative charge is present on oxygen atom all the time whereas, in phenoxide ion, out of total four resonating structures, in three structures, negative charge is present on carbon atom which makes it less stable.


(b) (i) Reduction of aldehyde or ketone to respective hydrocarbon.





R = any alkyl group.

R' = -H or any alkyl group

(ii) Formation of  $\beta$ -hydroxyaldehyde or  $\beta$ -hydroxy ketone from aldehydes and ketones respectively.



(iii)





**23. Account for the following :**

[3]

(i) Bi(V) is a stronger oxidizing agent than Sb(V).

(ii) N – N single bond is weaker than P – P single bond.\*\*

(iii) Noble gases have very low boiling points.

**Answer :** (i) Due to inert pair effect +3 oxidation state of Bi is more stable than its +5 oxidation state while oxidation state of Sb is more stable than its +3 oxidation state. Therefore, Bi (V) can accept a pair of electrons to form more stable Bi (III) more easily than Sb (V).

(ii) N has small size so lone pair is more concentrated over N hence repulsion takes place and bond becomes weak but P has large size therefore, no repulsion takes place and Hence, bond becomes strong.

(iii) Noble gas are monoatomic with weak Vander Waals forces of attraction, Hence, noble gases have very low boiling point.

**24. (i) Name the sweetening agents used in the preparation of sweets for a diabetic patient.** [3]

(ii) What are antibiotics ? Give an example.

(iii) Give two example of macromolecules that are chosen as drug targets.

**Answer :** (i) Sucralose.

(iii) Carbohydrate, lipid, proteins, enzymes, nucleic acid.

**27. (i) Deficiency of which vitamin causes rickets ?** [3]

(ii) Give an example for each of fibrous protein and globular protein.

(iii) Write the product formed on reaction of D-Glucose with Br<sub>2</sub> water.

**Answer :** (i) Vitamin D.

(ii) Fibrous protein : Keratin or myosin  
Globular protein : Insulin or albumin.

(iii) Gluconic acid i.e.

HOOC (CH<sub>2</sub>OH)<sub>4</sub>CH<sub>2</sub>OH.

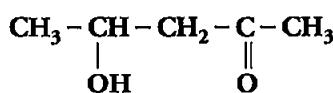
••

## SET III

### Chemistry 2014 (Delhi)

Time allowed : 3 hours

Maximum marks : 70


**Note :** Except for the following questions, all the remaining questions have been asked in previous sets.

**1. Give one example each of lyophobic sol and lyophilic sol.** [1]

**Answer :** Lyophobic sol : Metal sol or metal sulphide.

Lyophilic sol : Gum, Starch, gelatin.

**2. Write the IUPAC name of the compound.** [1]



**Answer :** 4-Hydroxypentan-2-one.

**3. What type of intermolecular attractive interaction exists in the pair of methanol and acetone ?** [1]

**Answer :** Hydrogen bonding (intermolecular)

**6. Name the products of hydrolysis of sucrose.** [1]

**Answer :** Glucose and fructose.

**9. State Raoult's law for the solution containing volatile components. What is the similarity between Raoult's law and Henry's law ?** [2]

**Answer :** Raoult's law states that the partial pressure of the vapour of a volatile component in a solution is directly proportional to its mole fraction in the solution.

Raoult's law is a special case of Henry's law.

**10. Explain the following terms :** [2]

(i) Rate constant (k)

(ii) Half life period of reaction (t<sub>1/2</sub>).

**Answer :** (i) Rate constant (k) is the rate of reaction when the concentration of reactants is unity.

(ii) Half life period (t<sub>1/2</sub>) of reaction is the time in which the concentration of reactant is reduced to half of its initial concentration.

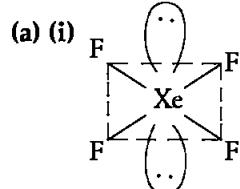
**11. Write the principles of the following methods :** [2]

(i) Froth floatation method

(ii) Electrolytic refining

\*\* Answer is not given due to change in present syllabus.

**Answer :** (i) It is based on the difference in wetting qualities of gangue and the sulphide ore particles with water and oil. Whereas the ore particles are wetted by oil, the gangue or the earthy particles are wetted by water.


(ii) In this process a slab of impure copper is used as anode and a thin sheet of pure copper as cathode. The copper sulphate is used as electrolytic solution. By passing electricity through the cell copper is dissolved from the anode and deposited on cathode. The impurities either remain in solution or collect as an insoluble gangue.

**20. (a) Draw structure of the following compounds :**

(i)  $\text{XeF}_4$       (ii)  $\text{N}_2\text{O}_5^{**}$

(b) Write the structural difference between white phosphorus and red phosphorus. [3]

**Answer :**



**22. Account for the following :**

- (i) Sulphur in vapour form exhibit paramagnetic behaviour.
- (ii)  $\text{SnCl}_4$  is more covalent than  $\text{SnCl}_2$ .
- (iii)  $\text{H}_3\text{PO}_2$  is stronger reducing agent than  $\text{H}_3\text{PO}_3$ . [2]

**Answer :** (i) In vapour form sulphur partly exists as  $\text{S}_2$  molecule which have two unpaired electrons in the antibonding  $p$  molecular orbitals like  $\text{O}_2$

molecule and hence exhibits paramagnetism.

(ii) It is due to higher oxidation state (+4) of Sn in  $\text{SnCl}_4$  or because of its high polarising power which increases the covalent character of bond formation between the central atom and the atoms around it.

(iii) It is because of two P-H bonds in  $\text{H}_3\text{PO}_2$  whereas there is only one P-H bond in  $\text{H}_3\text{PO}_3$ .

**23. (i) What are disinfectants ? Give an example. [3]**

(ii) Give two examples of macromolecules that are chosen as drug targets.

(iii) What are anionic detergents ? Give an example.

**Answer :** (i) Chemicals which are used to kill micro-organisms and applied on non-living objects like floors and drains are called disinfectants e.g. 1% phenol solution.

(ii) Proteins, amino acids and enzymes.

(iii) Detergents in which the anionic part of the molecule is responsible for cleansing action are called anionic detergents e.g. Sodium laurylsulphate.

**24. (i) Deficiency of which vitamin causes scurvy ?**  
 (ii) What type of linkage is responsible for the formation of proteins ?  
 (iii) Write the product formed when glucose is treated with HI. [3]

**Answer :** (i) Vitamin-C

(ii) Peptide linkage

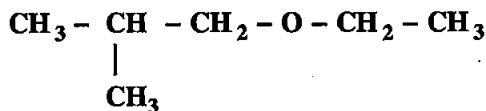
(iii) *n*-hexane :  $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$

••

# Chemistry 2015 (Outside Delhi)

**SET I**

Time allowed : 3 hours

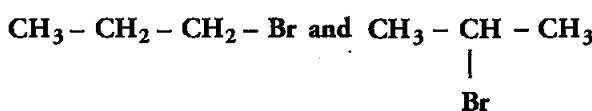

Maximum Marks : 70

1. Write the formulae of any two oxoacids of sulphur. [1]

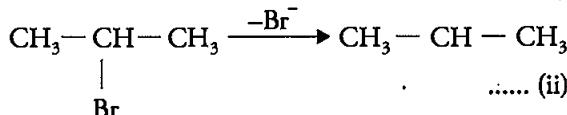
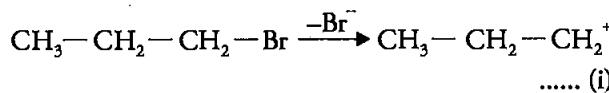
**Answer :** Oxoacids of sulphur are chemical compounds that contain sulphur, oxygen and hydrogen. Two oxoacids of sulphur are :

1. Peroxodisulphuric acid :  $\text{H}_2\text{S}_2\text{O}_8$
2. Dithionic acid :  $\text{H}_2\text{S}_2\text{O}_6$ .

2. Write the IUPAC name of the given compound : [1]




**Answer :** Ethoxy-2-methyl propane.



3. A delta is formed at the meeting point of sea water and river water. Why ? [1]

**Answer :** River water is the negatively charged colloidal solution whereas sea water contains a number of electrolytes the meeting point of sea water and river water, the electrolytes present in sea water coagulate the colloidal solution of clay resulting in its deposition with the formation of delta.

4. Which would undergo  $\text{S}_{\text{N}}1$  reactions faster in the following pair : [1]



**Answer :**



During  $\text{S}_{\text{N}}1$  reaction carbocation (i) and (ii) are formed. Out of (i) and (ii), (ii) is more stable due to +I effect of two methyl group.

Thus  $\text{CH}_3 - \text{CH} - \text{CH}_3$  gives faster  $\text{S}_{\text{N}}1$  reaction than



5. What is the formula of a compound in which the element Y forms ccp lattice and atoms of X occupy  $2/3^{\text{rd}}$  of tetrahedral voids ?\*\*<sup>1</sup> [1]

6. Write one similarity and one difference between the chemistry of lanthanoids and that of actinoids. [2]

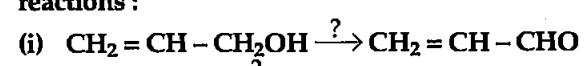
**Answer :** Similarity

1. Both involve the filling of  $f$ -orbital (i.e.  $4f$  and  $5f$ )
2. Both show contraction i.e. Lanthanide contraction and actinide contraction.

**Difference between lanthanoids and Actinoids :**

|    | Lanthanoids                                                 | Actinoids                                          |
|----|-------------------------------------------------------------|----------------------------------------------------|
| 1. | Except Pm (promethium) all lanthanoids are non-radioactive. | Actinoids are radioactive.                         |
| 2. | Lanthanoids do not show wide range of oxidation state.      | Actinoids shows the wide range of oxidation state. |
| 3. | Lanthanoids ions are generally colourless.                  | Actinoid ions are colourless                       |

7. (i) Write down the IUPAC name of the following complex :  $[\text{Co}(\text{NH}_3)_5\text{Cl}]^{2+}$

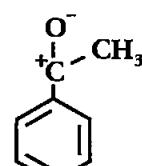
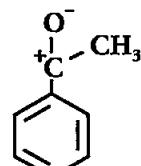

(ii) Write the formula for the following complex : Potassium tetrachloridonickelate (II). [2]

**Answer :**

(i)  $[\text{Co}(\text{NH}_3)_5\text{Cl}]^{2+}$  : Pentaamminechlorocobalt (III) ion

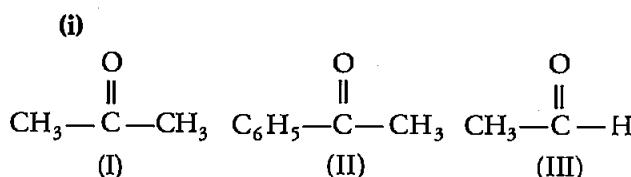
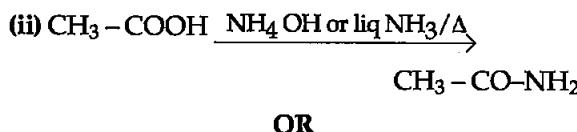
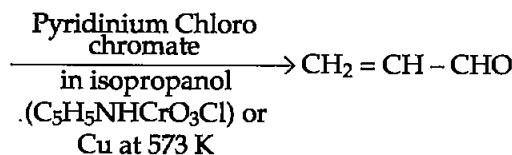
(ii) Potassium tetrachloridonickelate(II) :  $\text{K}_2[\text{NiCl}_4]$

8. Write the reagents required in the following reactions :

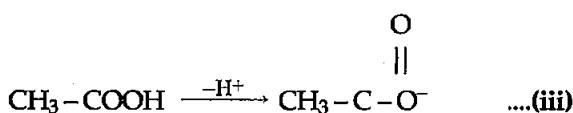
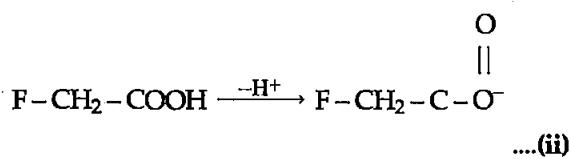
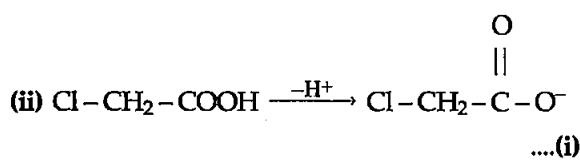




**OR**

Arrange the following compounds in increasing order of their property as indicated :




(i)  $\text{CH}_3\text{COCH}_3$ ,  $\text{C}_6\text{H}_5\text{COCH}_3$ ,  $\text{CH}_3\text{CHO}$  (reactivity towards nucleophilic addition reaction)

(ii)  $\text{Cl} - \text{CH}_2 - \text{COOH}$ ,  $\text{F} - \text{CH}_2 - \text{COOH}$ ,  $\text{CH}_3 - \text{COOH}$  (acidic character).


**Answer :** (i)  $\text{CH}_2 = \text{CH} - \text{CH}_2\text{OH}$

\*\* Answer not given due to change in present syllabus



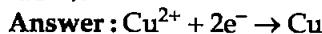
Nucleophiles are negatively charged entity, positivity of carbon in carbonyl group facilitates nucleophilic addition. Thus positivity of carbon in carbonyl group is in order III > I > II. Due to +I effect of  $-\text{CH}_3$  group and benzene ring  $\pi$ -cloud, positivity of carbonyl carbon is decreased so much than (I) and (II). Thus nucleophilic addition order III > I > II.



The stability order II > I > III. Due to +I effect of  $-\text{CH}_3$  group electron density of oxygen is more. But in (I) and (II), -I effect of  $-\text{F}$  is more than  $-\text{Cl}$ . Thus II is more stabilized than I. Thus acidity order is II > I > III.

9. (i) On mixing liquid X and liquid Y, volume of the resulting solution decreases. What type of deviation from Raoult's law is shown by the resulting solution? What change in temperature would you observe after mixing liquids X and Y?

(ii) What happens when we place the blood cell in water (hypotonic solution)? Give reason.


[2]

Answer : (i) Negative deviation of Raoult's law occurred. There is a elevation of boiling point i.e., temperature of the solution increases.

(ii) When blood cell is placed in water (hypotonic solution), water penetrate to blood cell and blood cell gets bulged and then disrupt.

10. Calculate the time to deposit 1.27 g of copper at cathode when a current of 2A was passed through the solution of  $\text{CuSO}_4$ .

(Molar mass of Cu =  $63.5 \text{ g mol}^{-1}$ , 1 F =  $96500 \text{ C mol}^{-1}$ ) [2]



63.5 g of copper deposited by  $2 \times 96500 \text{ C}$

$\therefore 1.27 \text{ g of copper will be deposited by}$

$$\frac{2 \times 96500 \times 1.27}{63.5} \text{ C} = 3860 \text{ C}$$

We know  $Q = It$

Here I = 2A and Q = 3860 C

$$t = \frac{Q}{I} = \frac{3860}{2} = 1930 \text{ s.}$$

11. A solution is prepared by dissolving 10 g of non-volatile solute in 200 g of water. It has a vapour pressure of 31.84 mm Hg at 308 K. Calculate the molar mass of the solute.

(Vapour pressure of pure water at 308 K = 32 mm Hg.) [3]

Answer : According to Raoult's law,

$$\frac{P^0 - P}{P^0} = \frac{w \times M}{m \times W}$$

Where

$P^0 \rightarrow$  Vapour pressure of pure water

$P \rightarrow$  Vapour pressure of solution

w  $\rightarrow$  Weight of solute

m  $\rightarrow$  Molecular weight of solute

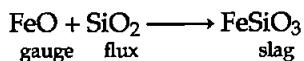
W  $\rightarrow$  Weight of solvent

M  $\rightarrow$  Molecular weight of solvent

$$\text{Thus, } \frac{32 - 31.84}{32} = \frac{10 \times 18}{m \times 200}$$

or,  $0.005 \text{ m} = 0.9$  or,  $m = 180$

Thus molar mass of the solute 180 gm./mol


12. (i) Name the method of refining to obtain silicon of high purity.

(ii) What is the role of  $\text{SiO}_2$  in the extraction of copper?

(iii) What is the role of depressants in froth floatation process? [3]

Answer : (i) Zone refining is the method of refining to obtain silicon of high purity.

(ii)  $\text{SiO}_2$  combined with the iron in the copper ore to form iron(II) silicate slag which is easily removed. Thus it ( $\text{SiO}_2$ ) acts as a flux to remove the impurity of Iron oxide.



(iii) In froth flotation process, depressant prevents the formation of froth. It is used to separate two sulphide ore by preventing the formation of froth of one sulphide ore and allowing the other to form the froth e.g.,  $\text{NaCN}$  a depressant selectively prevents  $\text{ZnS}$  from coming in froth but allows  $\text{PbS}$  to come with the froth.

13. (i) Which one of the following is a polysaccharide :  
Starch, maltose, fructose, glucose.  
(ii) Write one difference between  $\alpha$ -helix and  $\beta$ -pleated sheet structures of protein.  
(iii) Write the name of the disease caused by the deficiency of vitamin  $\text{B}_{12}$ . [3]

Answer : (i) Starch is a polysaccharide.

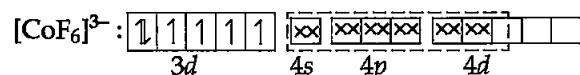
(ii)

|    | $\alpha$ -helix                                       | $\beta$ -pleated                                     |
|----|-------------------------------------------------------|------------------------------------------------------|
| 1. | It is rod like structure.                             | It is sheet like structure.                          |
| 2. | It is stabilized by intra-molecular hydrogen bonding. | It is stabilized by intermolecular hydrogen bonding. |

(iii) Pernicious Anaemia caused by the deficiency of Vitamin  $\text{B}_{12}$ .

14. (i) What type of isomerism is shown by the complex  $[\text{Cr}(\text{H}_2\text{O})_6] \text{Cl}_3$ ?  
(ii) On the basis of crystal field theory, write the electronic configuration for  $d^4$  ion if  $\Delta_o > P$ .  
(iii) Write the hybridization and shape of  $[\text{CoF}_6]^{3-}$ .

(Atomic number of Co = 27). [3]


Answer : (i) Hydration isomerism is shown by the complex  $[\text{Cr}(\text{H}_2\text{O})_6] \text{Cl}_3$ .

$[\text{Cr}(\text{H}_2\text{O})_5 \text{Cl}] \text{Cl}_2 (\text{H}_2\text{O})$ ;

$[\text{Cr}(\text{H}_2\text{O})_3 \text{Cl}_3] 3(\text{H}_2\text{O})$ .

(ii) Since  $\Delta_o > P$  it is on splitting  $t_{2g}^4 e_g^0$

(iii)  $[\text{CoF}_6]^{3-}$  :  $sp^3d^2$  hybridisation and the shape is octahedral.

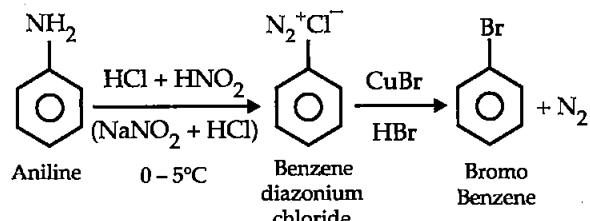


$[\text{CoF}_6]^{3-}$  has four unpaired electron. Thus it is paramagnetic.

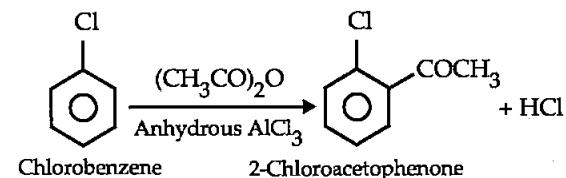
15. How can the following conversion be carried out :

(i) Aniline to bromobenzene  
(ii) Chlorobenzene to 2-chloroacetophenone  
(iii) Chloroethane to butane. [3]

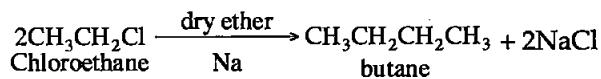
OR


What happens when

(i) Chlorobenzene is treated with  $\text{Cl}_2/\text{FeCl}_3$   
(ii) Ethyl chloride is treated with  $\text{AgNO}_2$   
(iii) 2-bromopentane is treated with alcoholic  $\text{KOH}$  ?

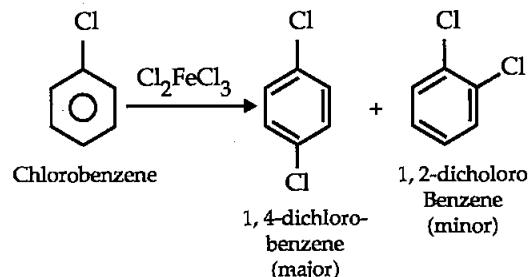

Write the chemical equations in support of your answer.

Answer :

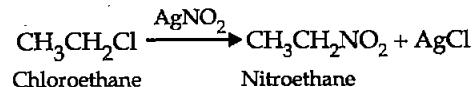

(i)



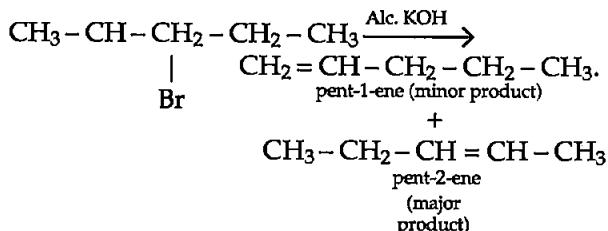
(ii)



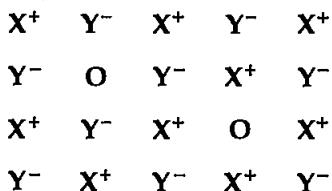

(iii)




OR


(i)




(ii)



(iii)



16. Examine the given defective crystal :\*\*



Answer the following questions :

(i) Is the above defect stoichiometric or non-stoichiometric ?

(ii) Write the term used for this type of defect. Give an example of the compound which shows this type of defect.

(iii) How does this defect affect the density of the crystal ? [3]

17. Conductivity of  $2.5 \times 10^{-4}$  M methanoic acid is  $5.25 \times 10^{-5}$  S cm $^{-1}$ .

Calculate its molar conductivity and degree of dissociation.

Given :  $\lambda_{(\text{H}^+)} = 349.5 \text{ S cm}^2 \text{ mol}^{-1}$  and  $\lambda^0_{(\text{HCOO}^-)} = 50.5 \text{ S cm}^2 \text{ mol}^{-1}$ . [3]

Answer : We know molar conductivity

$$\therefore (\lambda_m) = \frac{1000 \times \text{conductivity (k)}}{\text{concentration (c)}}$$

$$\therefore \lambda_m = \frac{1000 \times 5.25 \times 10^{-5}}{2.5 \times 10^{-4}} = 210 \text{ cm}^2 \text{ Mol}^{-1}$$

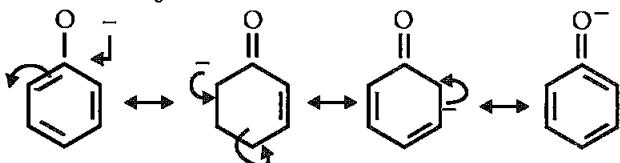
$$\lambda^0_{\text{HCOOH}} = \lambda^0_{(\text{H}^+)} + \lambda^0_{(\text{HCOO}^-)} = (349.5 + 50.5) = 400 \text{ S cm}^2 \text{ mol}^{-1}$$

$$\therefore \alpha = \frac{\lambda_m}{\lambda_0} = \frac{210}{400} = 0.52$$

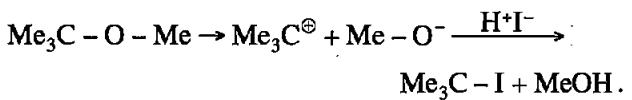
$$\text{or, } \alpha = 52.5 \%$$

18. Write any three differences between Physisorption and Chemisorption. [3]

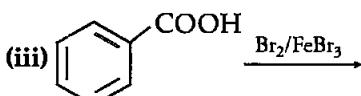
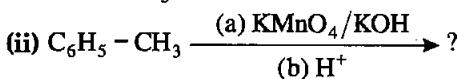
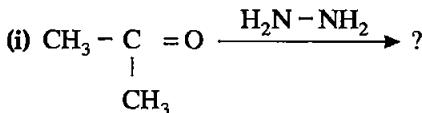
Answer :


|    | Physisorption                               | Chemisorption                         |
|----|---------------------------------------------|---------------------------------------|
| 1. | It forms multimolecular layers              | It forms unimolecular layers          |
| 2. | It is reversible                            | It is irreversible                    |
| 3. | It does not require activation energy       | It requires activation energy         |
| 4. | It is not very specific                     | It is very specific                   |
| 5. | Force of attraction are Vander Waals forces | Force of attraction are chemical bond |

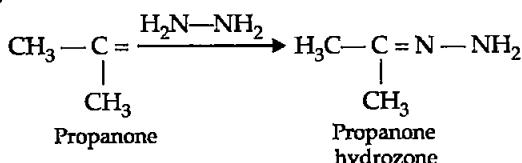
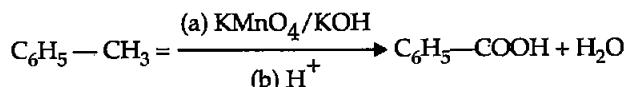
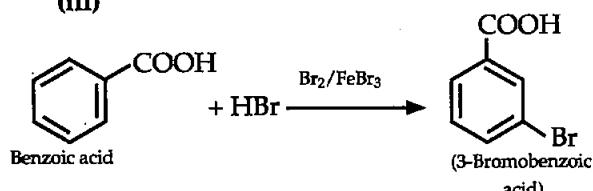
19. Give reasons for the following :


(i) Phenol is more acidic than methanol.

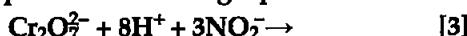
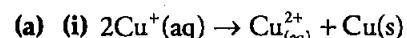
(ii) The C – O – H bond angle in alcohols is slightly less than the tetrahedral angle (109°28').




(iii)  $(\text{CH}_3)_3\text{C} - \text{O} - \text{CH}_3$  on reaction with HI gives  $(\text{CH}_3)_3\text{C} - \text{I}$  and  $\text{CH}_3 - \text{OH}$  as the main products and not  $(\text{CH}_3)_3\text{C} - \text{OH}$  and  $\text{CH}_3 - \text{I}$ . [3]

Answer : (i) Phenoxide ion is more stabilized than  $\text{CH}_3 - \text{O}^-$  ion because of resonance :Thus phenol is more acidic than  $\text{CH}_3 - \text{OH}$ .

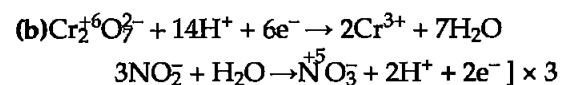



(ii) Due to presence of lone pair on oxygen which causes repulsion, the bond angle in alcohol is slightly less than tetrahedral angle (109.28').

(iii) Since  $(\text{CH}_3)_3\text{C}^+$  is more stabilized through +I effect of three methyl group thus  $(\text{CH}_3)_3\text{C} - \text{I}$  and  $\text{CH}_3 - \text{OH}$  formed on treatment of HI with  $(\text{CH}_3)_3\text{C} - \text{O} - \text{CH}_3$ .



20. Predict the products of the following reactions : [3]



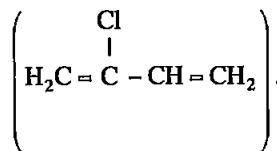
\*\* Answer is not given due to change in present syllabus.



**Answer :****(i)****(ii)****(iii)****21. (a) Account for the following :**

- $\text{Cu}^+$  is unstable in an aqueous solution.
- Transition metals form complex compounds.

**(b) Complete the following equation :****Answer :**

The higher stability of  $\text{Cu}^{2+}$  ion in aqueous solution is due to its greater negative charge than Cu. It compensates the second ionisation enthalpy of Cu involved in the formation of  $\text{Cu}^{2+}$  ions.


(ii) Since transition metals have unfilled or partially filled  $d$ -orbital thus to satisfy its octet forms complex compounds.

**22. Write the names and structures of the monomers of the following polymers :****(i) Terylene****(ii) Buna-S****(iii) Neoprene****[3]**

**Answer:** (i) Terylene Monomer is Ethylene Glycol ( $\text{HO} - \text{CH}_2 - \text{CH}_2 - \text{OH}$ ) and Terephthalic acid ( $\text{HO}_3\text{C} - \text{C}_6\text{H}_4 - \text{COOH}$ ).

(ii) Buna-S Monomer is Styrene ( $\text{C}_6\text{H}_5 - \text{CH} = \text{CH}_2$ ) and 1,3-Butadiene ( $\text{H}_2\text{C} = \text{CH} - \text{CH} = \text{CH}_2$ ).

(iii) Neoprene Monomer is Chloroprene



**23. Seeing the growing cases of diabetes and depression among young children, Mr. Chopra, the principal of one reputed school organized a seminar in which he invited parents and principals. They all resolved this issue by strictly banning junk food in schools and introducing healthy snacks and drinks like soup, lassi, milk, etc. in school canteens. They also decided to make compulsory half an hour of daily physical activities for the students in the morning assembly. After six months, Mr. Chopra conducted the health survey in most of the schools and discovered a tremendous improvement in the health of the students.**

After reading the above passage, answer the following questions :

- What are the values (at least two) displayed by Mr. Chopra ??
- As a student, how can you spread awareness about this issue ?
- Why should antidepressant drugs not be taken without consulting a doctor ?
- Give two examples of artificial sweeteners.

**[4]****Answer :**

(ii) Awareness can be spread by performing nukkad natak in community, displaying posters, cartoons and slogans and by conducting seminars.

(iii) Antidepressant drugs have lots of side effects like indigestion, headache, stomach aches, drowsiness, weight gain. That is why it should not be taken without consulting with doctors.

(iv) Example of artificial sweeteners are Aspartame, Saccharin, Sucralose etc.

**24. (a) Account for the following :**

- Acidic character increases from HF to HI.
- There is a large difference between the melting and boiling points of oxygen and sulphur.

\*\*Answers is not given due to change in the present syllabus.

(iii) Nitrogen does not form pentahalide.\*\*

(b) Draw the structures of the following :

(i)  $\text{ClF}_3$

(ii)  $\text{XeF}_4$

[5]

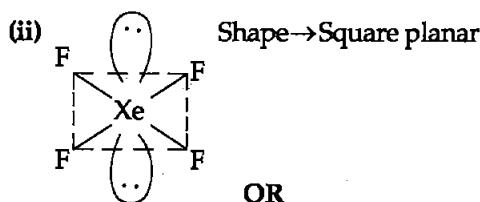
OR

(i) Which allotrope of phosphorus is reactive and why ?\*\*

(ii) How are the supersonic jet aeroplanes responsible for the depletion of ozone layer ?

(iii)  $\text{F}_2$  has lower bond dissociation enthalpy than  $\text{Cl}_2$ . Why ?

(iv) Which noble gas is used in filling balloons for meteorological observations ?

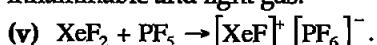

(v) Complete the following equation :



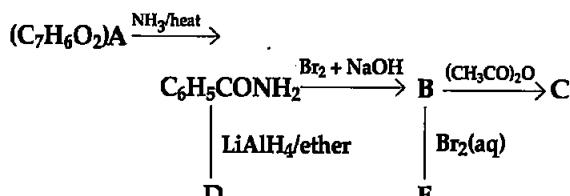
**Answer :** (a) (i) Size of halide ions is of the order  $\text{F}^- < \text{Cl}^- < \text{Br}^- < \text{I}^-$  with increase in size negative charge is dispersed throughout ions and ions gets stabilized. Thus acidity order



(ii) Due to presence of vacant  $d$ -orbital and combining forms of sulphur ( $\text{S}_8$ ) which is not present in oxygen, the cohesive energy of sulphur is more than oxygen leading to large melting point and boiling point.




OR


(ii) The exhaust emitted from supersonic jet aeroplane contains  $\text{CO}_2$ ,  $\text{NO}$  and other particles which are the killers of stratospheric ozone layer along with the supersonic sound produced by these aeroplanes are destroy ozone layer.

(iii) Due to smaller size and high electro-negativity of fluorine, more energy is required to break the bond of  $\text{F}_2$  than  $\text{Cl}_2$ . Thus  $\text{F}_2$  has lower bond dissociation energy than  $\text{Cl}_2$ .

(iv) Helium (He) gas is used in filling balloons for meteorological observations because it is non-inflammable and light gas.




25. An aromatic compound 'A' of molecular formula  $\text{C}_7\text{H}_6\text{O}_2$  undergoes a series of reactions as shown below. Write the structures of A, B, C, D and E in the following reactions : [5]

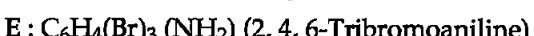
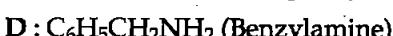
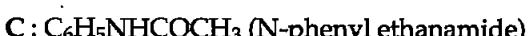


OR

(a) Write the structures of main products when benzene diazonium chloride reacts with the following reagents :

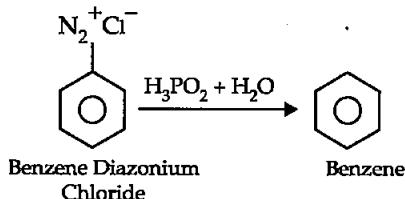


(b) Arrange the following in the increasing order of their basic character in an aqueous solution :

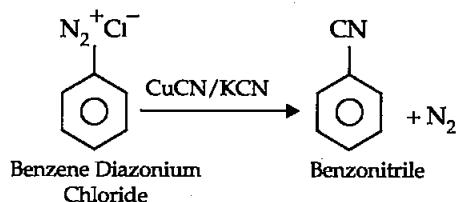




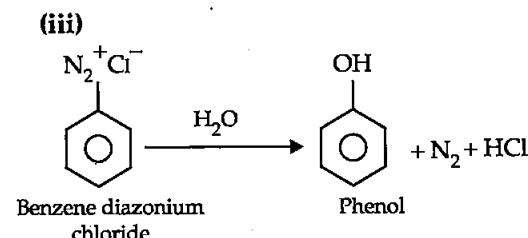

(c) Give a simple chemical test to distinguish between the following pair of compounds :




[5]

**Answer :**





OR

(a) (i)



(ii)





+I effect of three  $C_2H_5$  group increases the enormous availability of lone pair of nitrogen atom than +I effect of 2 ethyl group. Thus the order of basicity is I < III < II.



$C_6H_5 - NH - CH_3$  (Secondary amine) can be distinguished by Hinsberg's test. In this test amines are allowed to react with Hinsberg's reagent, benzenesulphonyl chloride ( $C_6H_5SO_2Cl$ ). Primary amines reacts with this reagent to form N-alkylbenzene sulphonyl amide which is soluble in alkali but secondary amines gives sulphonamide which is insoluble in alkali.

26. For the hydrolysis of methyl acetate in aqueous solution, the following results were obtained :

| t/s                        | 0    | 10   | 20    |
|----------------------------|------|------|-------|
| $[CH_3COOCH_3]/mol L^{-1}$ | 0.10 | 0.05 | 0.025 |

(a) Show that it follows pseudo first order reaction, as the concentration of water remains constant.

(b) Calculate the average rate of reaction between the time interval 10 to 20 seconds.  
(Given :  $\log 2 = 0.3010$ ,  $\log 4 = 0.6021$ ). [5]

OR

(a) For a reaction  $A + B \rightarrow P$ , the rate is given by  
 $Rate = k[A][B]^2$

(i) How is the rate of reaction affected if the concentration of B is doubled ?

(ii) What is the overall order of reaction if A is present in large excess ?

(b) A first order reaction takes 30 minutes for 50% completion. Calculate the time required for 90% completion of this reaction.

Answer : (a)  $[A]_0 = 0.01 \text{ Mol/L}$

$[A] = 0.05 \text{ Mol/L}$  at time  $t = 10 \text{ s}$ .

$$k = \frac{2.303}{10} \log \frac{0.10}{0.05}$$

$$k = \frac{2.303}{10} \log \frac{0.10}{0.05}$$

$$k = 0.0693 \text{ s}^{-1}$$

$$t = 20 \text{ s}$$

$$k = \frac{2.303}{t} \log \frac{[A]_0}{[A]} = \frac{2.303}{10} \log \frac{0.10}{0.05}$$

$k = 0.0693 \text{ s}^{-1}$ , Thus its pseudo first order reaction.

(b) The average rate constant is

$$\begin{aligned} -\frac{\Delta [R]}{\Delta t} &= \frac{\Delta [CH_3COOCH_3]}{\Delta t} \\ &= \frac{[0.025 \text{ mol L}^{-1} - 0.05 \text{ mol L}^{-1}]}{20 \text{ s} - 10 \text{ s}} = \frac{0.025}{10 \text{ s}} \\ &= 0.0025 \text{ mol L}^{-1} \text{ s}^{-1} \end{aligned}$$

OR

(a) (i) Since the given reaction has order two with respect to reactant B, thus if the concentration of B is doubled in the given reaction, then the rate of reaction will become four times.

(ii) If the concentration of B is doubled i.e.,  $[B]^2$  the overall reaction will be two, because if A is present in large excess, then the reaction will be independent of the concentration of A and will be dependent only on the concentration of B. Order of reaction = 2.

(b)  $t_{1/2} = 30 \text{ min}$

$$[R] = [R]_0 - 90\% \text{ of } [R]_0$$

$$= [R]_0 - \frac{90[R]_0}{100}$$

$$[R] = \frac{[R]_0}{10}$$

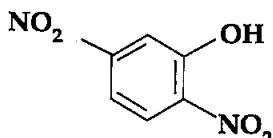
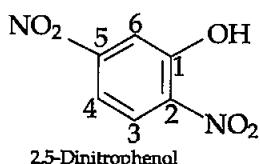
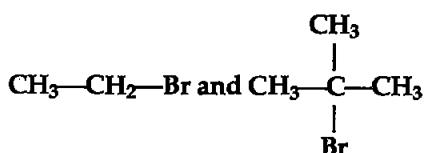
$$K = \frac{0.693}{t_{1/2}} = \frac{0.693}{30} = 0.0231 \text{ min}^{-1}$$

$$t = \frac{2.303}{K} \log \frac{[R]_0}{[R]}$$

$$t = \frac{2.303}{0.0231} \log \frac{[R]_0}{[R]} - \frac{2.303}{0.0231} \log 10$$

$$t = 99.7 \text{ min}$$

Note : All questions are same in outside Delhi  
Set II and III.




**Chemistry 2015 (Delhi)****SET I**

Time allowed : 3 hours

Maximum Marks : 70

1. What is the basicity of  $\text{H}_3\text{PO}_4$ ?\*\* [1]

2. Write the IUPAC name of the given compound : [1]

**Answer :**3. Which would undergo  $\text{S}_{\text{N}}2$  reaction faster in the following pair and why ? [1]

**Answer :** Primary alkyl halides will undergo  $\text{S}_{\text{N}}2$  reactions faster than tertiary alkyl halides because of less steric hindrance experienced by the approaching nucleophile. Hence, out of the given pair, primary alkyl halide ( $\text{CH}_3\text{CH}_2\text{Br}$ ) would undergo  $\text{S}_{\text{N}}2$  reaction faster.

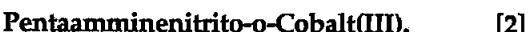
4. Out of  $\text{BaCl}_2$  and  $\text{KCl}$ , which one is more effective in causing coagulation of a negatively charged colloidal Sol ? Give reason. [1]

**Answer :** According to the Hardy-Schulze rule, greater the valency of a flocculating ion, the greater is its power to cause precipitation. Between  $\text{Ba}^{2+}$  (from  $\text{BaCl}_2$ ) and  $\text{K}^+$  (from  $\text{KCl}$ ),  $\text{Ba}^{2+}$  has greater valency. Therefore,  $\text{BaCl}_2$  will be more effective in causing the coagulation of a negatively charged colloidal sol.

5. What is the formula of a compound in which the element Y forms ccp lattice and atoms of X occupy  $\frac{1}{3}$  rd of tetrahedral voids ?\*\* [1]

6. What are the transition elements ? Write two characteristics of the transition elements. [2]

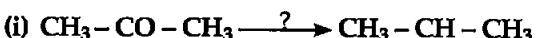
**Answer :** Elements which in their ground state or in any of their oxidation state have partially filled  $d$ -orbital are called transition elements. The name 'transition' given to the elements of  $d$ -block is only because of their position between  $s$ -block and  $p$ -block elements.


The two characteristics of transition elements are :

1. They show variable oxidation states.
2. They generally form coloured compounds.

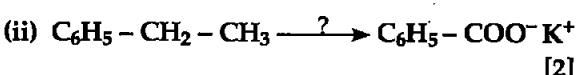
7. (i) Write down the IUPAC name of the following complex : [1]




(ii) Write the formula for the following complex : [2]

**Answer :**

(i) Diamminedichloridoethylenediaminechromium(III) chloride.


(ii)  $[\text{Co}(\text{NH}_3)_5(\text{ONO})]^{2+}$ .

8. Name the reagents used in the following reactions :



|

OH



[2]

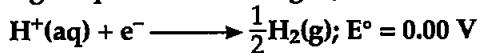
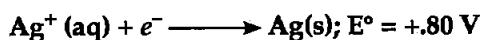
**Answer :**(i) Sodium borohydride ( $\text{NaBH}_4$ )/ $\text{LiAlH}_4/\text{H}_2$ , Pt.(ii) Alkaline potassium permanganate ( $\text{KMnO}_4$ ,  $\text{KOH}$ ).9. What is meant by positive deviations from Raoult's law ? Give an example. What is the sign of  $\Delta_{\text{mix}}\text{H}$  for positive deviation ? [2]**OR**

Define azeotropes. What type of azeotrope is formed by positive deviation from Raoult's law ? Give an example.

\*\* Answer is not given due to change in present syllabus

**Answer :** Positive deviation from Raoult's law means that the observed vapour pressure is greater than expected, and it occurs when the A – B attractions are weaker than the average of the attractions in the pure component of the mixture. For example : A mixture of ethanol and acetone shows a positive deviation from Raoult's law.

In case of solutions showing positive deviations, absorption of heat takes place; i.e.,  $\Delta_{\text{mix}}H$  has a positive (+) sign.



**OR**

Azeotropes are the binary mixtures which have the same composition in liquid and vapour phases and boil at a constant temperature.

A minimum-boiling azeotrope is formed by solutions showing a large positive deviation from Raoult's law at a specific composition.

**Example :**  $\text{C}_2\text{H}_5\text{OH} + \text{H}_2\text{O}$  (An ethanol-water mixture)

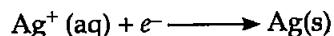
10. (a) Following reactions occur at cathode during the electrolysis of aqueous silver chloride solution :



On the basis of their standard reduction electrode potential ( $E^\circ$ ) values, which reaction is feasible at the cathode and why ?

(b) Define limiting molar conductivity. Why conductivity of an electrolyte solution decreases with decrease in concentration ?

[2]


**Answer :** (a) The relationship between the standard free energy change and emf of a cell reaction is given by :

$$\Delta G^\circ = -nFE^\circ$$

Thus, more positive the standard reduction potential of a reaction, the more negative is the standard free energy change associated with the process and consequently, the higher is the feasibility of the reaction.

Since  $E^\circ_{\text{Ag}^+/\text{Ag}}$  has a greater positive value than  $E^\circ_{\text{H}^+/\text{H}_2}$ , the reaction which is feasible at the

cathode is given by



(b) The limiting molar conductivity of an electrolyte is defined as its molar conductivity when the concentration of the electrolyte in the solution approaches zero.

The conductivity of an electrolyte solution is the conductance of ions present in a unit volume of the solution. The number of ions (responsible for carrying current) decreases when the solution is diluted or the concentration is decreased. As a result, the conductivity of an electrolyte solution decreases with the decrease in concentration.

11. 3.9 g of benzoic acid dissolved in 49 g of benzene shows a depression in freezing point of 1.62 K. Calculate the Van't Hoff factor and predict the nature of solute (associated or dissociated).

(Given : Molar mass of benzoic acid = 122 g mol<sup>-1</sup>,  $K_f$  for benzene = 4.9 K kg mol<sup>-1</sup>) [3]

**Answer :** We know that the depression in freezing point by

Given : Mass of solute ( $W_B$ ) i.e.,  $\text{C}_6\text{H}_5\text{COOH}$  = 3.9 g

$$\text{Mass of solvent } (W_A) = 49 \text{ g} = \frac{49}{1000} \text{ kg}$$

Molar mass of  $\text{C}_6\text{H}_5\text{COOH}$  ( $M_S$ ) = 122 g/mol

$$K_f = 4.9 \text{ K kg/mol}$$

$$\Delta T_f = 1.62 \text{ K}$$

To find : Van't Hoff factor ( $i = ?$ )

We know that the depression in freezing point is given by :

$$\Delta T_f = i \times K_f \times m$$

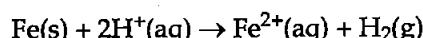
$$\Delta T_f = i \times K_f \times \frac{W_B}{M_S} \times \frac{1}{W_A(\text{kg})}$$

$$i = \frac{\Delta T_f \times M_S \times W_A(\text{kg})}{K_f \times W_B}$$

$$i = \frac{1.62 \times 122 \times 49}{4.9 \times 3.9 \times 1000}$$

Since,  $i < 1$ , hence solute benzoic acid ( $\text{C}_6\text{H}_5\text{COOH}$ ) will undergo association in benzene.

12. (i) Indicate the principle behind the method used for the refining of zinc.




Carbonyl, CO being a strong field ligand causes the pairing of valence electrons in the Ni atom against the Hund's Rule of Maximum Multiplicity. This results in the formation of an inner orbital complex,  $[\text{Ni}(\text{CO})_4]$ . Since the complex  $[\text{Ni}(\text{CO})_4]$  has no unpaired electron, it is diamagnetic in nature and posses tetrahedral shape.

**16. Calculate emf of the following cell at 25°C :**

$$\text{Fe} | \text{Fe}^{2+}(0.001\text{M}) | \text{H}^+(0.01\text{M}) | | \text{H}_2(\text{g}) \text{ (1bar)} \\ \text{Pt(s) } E^\circ(\text{Fe}^{2+} | \text{Fe}) = -0.44 \text{ V } E^\circ(\text{H}^+/\text{H}_2) = 0.00 \text{ V.} \\ [3]$$

**Answer :** For the given cell representation, the cell reaction will be



The standard emf of the cell will be

$$E^\circ_{\text{cell}} = E^\circ_{\text{H}^+/\text{H}_2} - E^\circ_{\text{Fe}^{2+}/\text{Fe}}$$

$$E^\circ_{\text{cell}} = 0 - (-0.44) = 0.44 \text{ V}$$

The Nernst equation for the cell reaction at 25°C will be

$$E_{\text{cell}} = E^\circ_{\text{cell}} \frac{0.0591}{n} \log \frac{[\text{Fe}^{2+}]}{[\text{H}^+]^2} \\ = 0.44 - \frac{0.0591}{2} \log \frac{0.001}{(0.01)^2} \\ = 0.44 - \frac{0.0591}{2} \log 10 \\ = 0.44 - \frac{0.0591}{2}$$

**Answer :**

$$E_{\text{cell}} = 0.4105 \text{ V}^2 \approx 0.41 \text{ V}$$

**17. Give reasons for the following observations :**

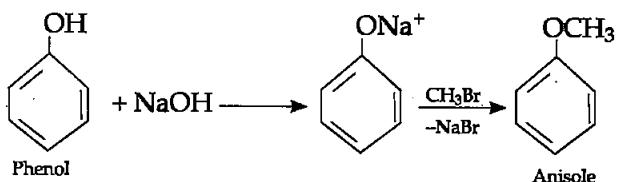
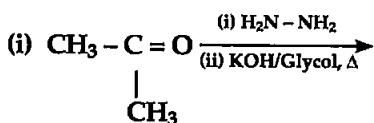
- Leather gets hardened after tanning.
- Lyophilic sol is more stable than lyophobic sol.
- It is necessary to remove CO when ammonia is prepared by Haber's process. [3]

**Answer :** (i) Animal skin (hide) is colloidal in nature and has positively charged colloidal particles. When a hide is soaked in tanning, mutual coagulation takes place and as a result, leather get hardened.

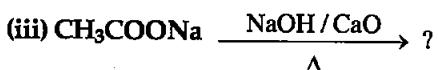
(ii) The stability of lyophilic solution depends on the two factors, the presence of a charge and the solvation of colloide particles. On the other hand, the stability of lyophobic solutions is only because of the presence of a charge. Thus, lyophilic solution is more stable than lyophobic solution due to the extensive solvation.

(iii) It is necessary to remove CO when ammonia is prepared by Haber's process because in this process the CO act as a poison and adversely affects the activity of iron catalyst, used in the process.

**18. Write the names and structures of the monomers of the following polymers :**



(i) Nylon-6, 6

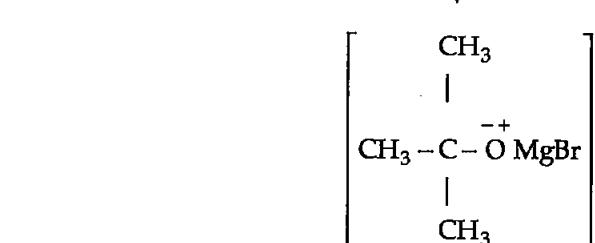
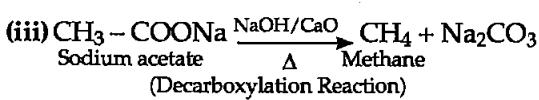
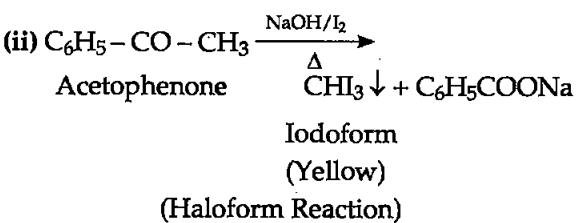
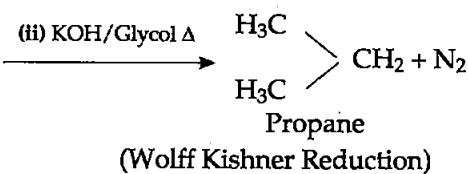
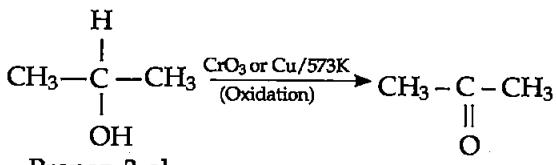
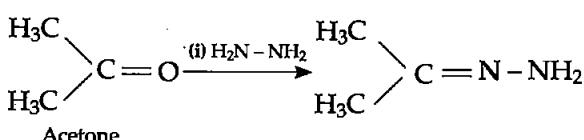
(ii) PHBV


(iii) Neoprene. [3]

|       | Polymer    | Name of Monomer(s)                                  | Structure of Monomer(s)                                                                                                                                                                                                      |
|-------|------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)   | Nylon-6, 6 | Hexamethylenediamine and adipic acid                | $\text{H}_2\text{N}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{NH}_2$<br>Hexamethylenediamine<br>$\text{HOOC}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{COOH}$<br>Adipic acid |
| (ii)  | PHBV       | 3-Hydroxypentanoic acid and 3-Hydroxybutanoic acid. | $\text{CH}_3-\text{CH}_2-\text{CH}(\text{OH})-\text{CH}_2-\text{COOH}$<br>3-Hydroxypentanoic acid<br>$\text{CH}_3-\text{CH}(\text{OH})-\text{CH}_2-\text{COOH}$<br>3-Hydroxybutanoic acid                                    |
| (iii) | Neoprene   | Chloroprene                                         | $\text{H}_2\text{C}=\text{C}(\text{Cl})-\text{C}(\text{H})=\text{CH}_2$<br>Chloroprene                                                                                                                                       |

## 19. Predict the products of the following reactions :









(ii)



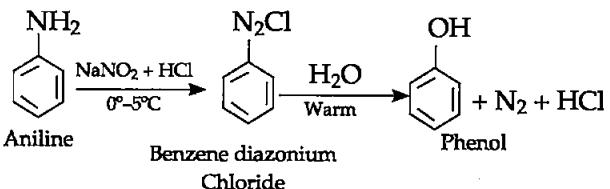
[3]

Answer :

(i)



## 20. How do you convert the following :


(i) Phenol to anisole

(ii) Propan 2-ol to 2-methylpropan-2-ol

(iii) Aniline to phenol

(iii)

[3]

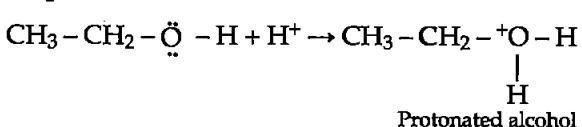


OR

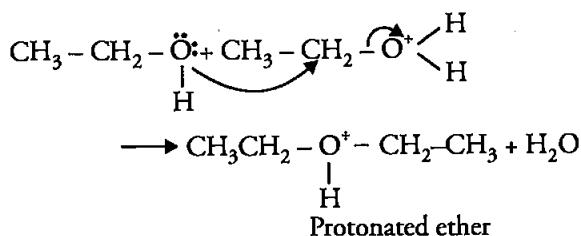
OR

(b) Write the mechanism of the following reaction :

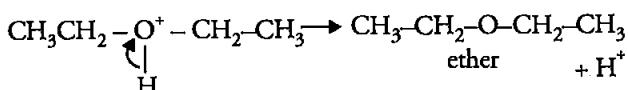



(b) Write the equation involved in the acetylation of Salicyclic acid. [3]

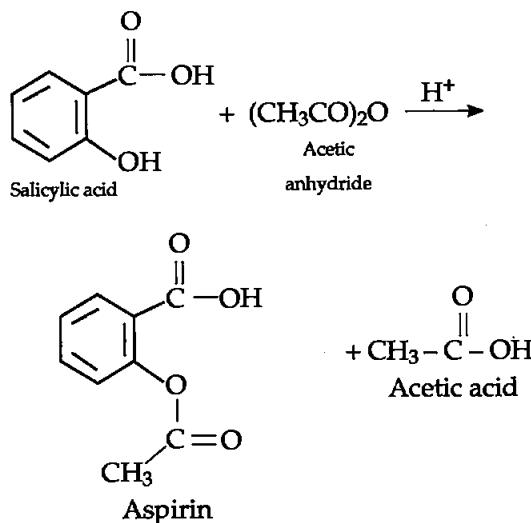
Answer :


(i)

(a) The given reaction follows  $5\text{N}^2$  mechanism as shown below :


Step 1 : Protonation




## Step 2 : Nucleophilic attack ( $5N^2$ )



### Step 3 :



**(b) Acetylation of Salicyclic acids.**



21. (i) Which one of the following is a disaccharide :  
Starch, Maltose, Fructose, Glucose ?

(ii) What is the difference between fibrous protein and globular protein ?

(iii) Write the name of vitamin whose deficiency causes bone deformities in children. [3]

**Answer :** (i) Maltose is a disaccharide, as it contains  $\alpha$ -D-glucose units.

(ii)

|    | Fibrous Proteins                                                                                                         | Globular Proteins                                                                                                                         |
|----|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | In fibrous proteins, the polypeptide chains, run parallel and are held together by strong hydrogen and disulphide bonds. | In globular proteins, the polypeptide chains are folded looped or tursted around themselves, giving these proteins a spherical structure. |

**\*\*Answer is not given due to change in the present syllabus.**

|    |                                                                                                                                                   |                                                                                         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 2. | They are usually insoluble in water.                                                                                                              | They are usually soluble in water.                                                      |
| 3. | They are structural proteins. For example, keratin is present in nails and hair, collagen is present in tendons and myosin is present in muscles. | They are functional proteins. For example, most enzymes and some hormones like insulin. |

(iii) Deficiency of Vitamin D causes the bone deformities in children.

**22. Give reasons :**

(a) *n*-Butyl bromide has higher boiling point than *t*-butyl bromide.

(b) Racemic mixture is optically inactive.

(c) The presence of nitro group ( $\text{-NO}_2$ ) at o/p positions increases the reactivity of haloarenes towards nucleophilic substitution reactions. [3]

**Answer :** (a) *n*-butyl bromide is a straight chain molecule having larger surface area and therefore, has stronger intermolecular forces. On the other hand, *t*-butyl bromide  $(CH_3)_3CBr$  is branched molecule, so it has a smaller surface area. Hence, it has weaker intermolecular force.

**(b)** Racemic mixture is an equimolar solution of two enantiomers (*d* and *l* forms) and thus, the rotation due to one isomer is cancelled by the rotation due to another. Therefore, it has zero optical rotation and hence, it is optically inactive.

(c) This is because nitro group ( $\text{-NO}_2$ ) at o/p positions withdraw the electrons from the benzene ring. The reduced electron density at o/p positions for haloarenes facilitate the attack of nucleophile. The negative charge in the Carbanion formed, at o/p positions with respect to halogen atom is stabilised through resonance and due to the presence of nitro groups ( $\text{NO}_2$ ) respectively.

23. Mr. Roy, the principal of one reputed school organized a seminar in which he invited parents

and principals to discuss the serious issue of diabetes and depression in students. They all resolved this issue by strictly banning the junk food in school and to introduce healthy snacks and drinks like soup, lassi, milk etc. in school canteens. They also decided to make compulsory half an hour physical activities for the students in the morning assembly daily. After six months, Mr. Roy conducted the health survey in most of the schools and discovered a tremendous improvement in the health of students.

After reading the above passage, answer the following :

- What are the values (at least two, displayed by Mr. Roy ?\*\*
- As a student, how can you spread awareness about this issue ?
- What are tranquilizers ? Give an example.
- Why is use of aspartame limited to cold foods and drinks ?

[4]

**Answer :**

(ii) As a student, I can spread awareness regarding diabetes and depression among students by conducting seminars, health camps, debates, distribution of pamphlets, and workshops by doctors. So as to highlight the needs to follow healthy eating.

(iii) Tranquilizers are neurologically active drugs that induce a sense of well being and are used to treat stress, anxiety and mild or severe mental disease. They perform their function by inhibiting the message transfer mechanism from nerve to receptor e.g., equanil, meprobamate and iproniazid etc.

(iv) The use of aspartame is limited to foods and cold drinks because aspartame is unstable at cooking temperature.

24. (a) Account for the the following :

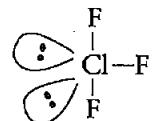
- Acidic character increases from HF to HI.
- There is large difference between melting and boiling points of oxygen and sulphur.
- Nitrogen does not form pentahalide.

(b) Draw the structures of the following :

(i)  $\text{ClF}_3$  (ii)  $\text{XeF}_4$  [5]

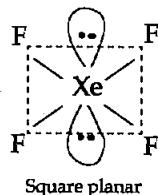
OR

- Which allotrope of phosphorus is more reactive and why ?
- How the supersonic jet aeroplanes are responsible for the depletion of ozone layers ?
- $\text{F}_2$  has lower bond dissociation enthalpy than  $\text{Cl}_2$ . Why ?
- Which noble gas is used in filling balloons for meteorological observations ?
- Complete the equation :

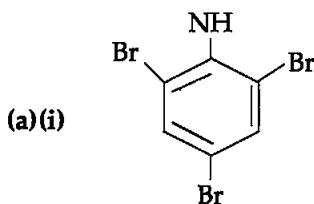



**Answer :** (a) (i) The acidic strength of the hydrohalic acids increases from HF to HI because the stability of the acids decreases from HF to HI on account of decrease in bond dissociation enthalpy of H – X bond from HF to HI.

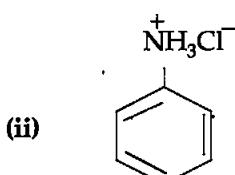
(ii) The difference in melting point and boiling point of oxygen and sulphur is due to the difference in their atomicities oxygen exists as a diatomic ( $\text{O}_2$ ) molecule, while sulphur exists as a polyatomic ( $\text{S}_8$ ) molecule and also oxygen is small in size and have high electronegativities.


(iii) Being an element of second period, Nitrogen has no 'd' orbitals and its maximum covalency is restricted to four. Hence, due to the non-availability of d-orbitals, it can't form pentahalides.

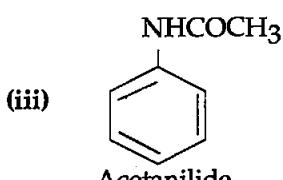
(b) (i) Structure of  $\text{ClF}_3$




Bent-T-Shaped


(ii) Structure of  $\text{XeF}_4$





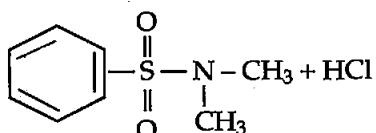
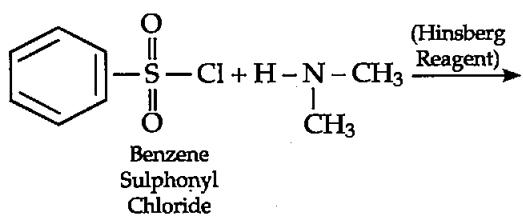



2, 4, 6-Tribromo aniline



Anilinium Chloride





Acetanilide

(b) Ethanol has high boiling point than ethylamine because oxygen, being more electronegative forms strong extensive hydrogen bond as compared to that of nitrogen. In trimethylamine there is no hydrogen and hence has the lowest boiling point.

Increasing order of boiling point.



(c)  $(\text{CH}_3)_2\text{NH}$  reacts with benzene sulphonyl chloride (Hinsberg reagent) as follows :



N, N - Dimethyl benzenesulphonamide.

$(\text{CH}_3)_3\text{N}$  does not react with benzene sulphonyl chloride.

26. For the hydrolysis of methyl acetate in aqueous solution, the following results were obtained :

| t/s                                                 | 0    | 30   | 60   |
|-----------------------------------------------------|------|------|------|
| $[\text{CH}_3\text{COOCH}_3]$ / $\text{mol L}^{-1}$ | 0.60 | 0.30 | 0.15 |

(i) Show that it follows pseudo first order reaction, as the concentration of water remains constant.

(ii) Calculate the average rate of reaction between the time interval 30 to 60 seconds.  
(Given  $\log 2 = 0.3010$ ,  $\log 4 = 0.6021$ ) [5]

OR

(a) For a reaction  $\text{A} + \text{B} \rightarrow \text{P}$ , the rate is given by

$$\text{Rate} = k[\text{A}][\text{B}]^2$$

(i) How is the rate of reaction affected if the concentration of B is doubled ?

(ii) What is the overall order of reaction if A is present in large excess ?

(b) A first order reaction takes 30 minutes for 50% completion. Calculate the time required for 90% completion of this reaction.

$$(\log 2 = 0.3010)$$

**Answer :**

For the hydrolysis of methyl acetate in aqueous solution :

(i)  $K = \frac{2.303}{t} \log \frac{[\text{A}]_0}{[\text{A}]}$

where  $[\text{A}]_0$  = Initial concentration of reactant

$[\text{A}]$  = Final concentration of reactant.

At  $t_1 = 30 \text{ sec}$ ,

$$K = \frac{2.303}{30} \log \frac{0.60}{0.30}$$

$$K = 0.07677 \log 2$$

$$K = 0.0231 \text{ s}^{-1}$$

for  $t = 60 \text{ sec}$

$$K = \frac{2.303}{60} \log \frac{0.60}{0.15}$$

$$K = 0.07677 \log 2$$

$$K = 0.0231 \text{ s}^{-1}$$

∴ K is same for both the cases hence it is pseudo first order reaction.

(ii) Average rate of reaction between the time interval of 30 – 60 seconds is given by

$$K = \frac{-\Delta [CH_3COOCH_3]}{\Delta t}$$

$$K = -\left(\frac{0.15 - 0.30}{60 - 30}\right)$$

$$= \frac{0.15}{30} = 0.005 \text{ mol L}^{-1}\text{s}^{-1}$$

OR

(a) (i) Since the given reaction has order two with respect to reactant B, thus if the concentration of B is doubled in the given reaction, then the rate of reaction will become four times.

(ii) If the concentration of B is doubled i.e.;  $[B]^2$  the overall reaction will be two, because if A is present in large excess, then the reaction will be independent of the concentration of A and will be dependent only on the concentration of B.

Order of reaction = 2.

$$(b) \quad t_{1/2} = 30 \text{ min}$$

$$[R] = [R]_0 - 90\% \text{ of } [R]_0$$

$$= [R]_0 - \frac{90[R]_0}{100}$$

$$[R] = \frac{[R]_0}{10}$$

$$K = \frac{0.693}{t_{1/2}} = \frac{0.693}{30} = 0.0231 \text{ min}^{-1}$$

$$t = \frac{2.303}{K} \log \frac{[R]_0}{[R]}$$

$$t = \frac{2.303}{0.0231} \log \frac{[R]_0}{[R]_0}$$

$$= \frac{2.303}{0.0231} \log 10$$

$$t = 99.7 \text{ min}$$

Note : All questions of Delhi Set-II are from Delhi Set I and Delhi Set-III are from Set I and II.

••

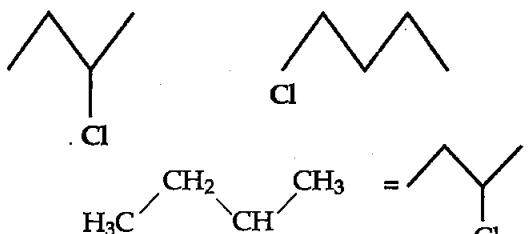
## Chemistry 2014 (Outside Delhi)

SET I

Time allowed : 3 hours

Maximum marks : 70

1. What is the effect of temperature on chemisorption? [1]


**Answer :** Chemisorption initially increases then decreases with rise in temperature. The initial increase is due to the high energy of activation and the decrease afterwards is due to the exothermic nature of adsorption equilibrium.

2. What is the role of zinc metal in the extraction of silver? [1]

**Answer :** Zinc is used as a reducing agent to recover silver from its cyanide complex. It reduces  $Ag^+$  to Ag and itself get oxidised to  $Zn^{2+}$ .

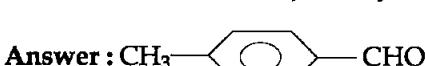
3. What is the basicity of  $H_3PO_3$ ?\*\* [1]

4. Identify the chiral molecule in the following pair: [1]



**Answer :** is chiral due to pairing with four different groups.

5. Which of the following is a natural polymer? [1] Buna-S, Proteins, PVC Economics type


**Answer :** Protein, is a natural polymer having amino acid as a monomer.

6. The conversion of primary aromatic amines into diazonium salts is known as \_\_\_\_\_. [1] **Answer :** Diazotisation reaction.

7. What are the products of hydrolysis of sucrose? [1]

**Answer :** The products of Hydrolysis of sucrose are : Glucose and Fructose

8. Write the structure of *p*-methylbenzaldehyde. [1]



\*\* Answer is not given due to change in present syllabus.

Students don't need to purchase any Guide, Question Bank or Sample/model paper from market. All material will be available on this website in the form of free PDFs by 30 September. On website [www.cbsepdf.com](http://www.cbsepdf.com) following materials will be provided :

1. NCERT Solutions
2. Previous Years Papers (2011-2019)
3. Previous Years Chapterwise Question Bank
4. 20 Solved Sample Paper

Students can download from following website

**[www.cbsepdf.com](http://www.cbsepdf.com)**

A mission for free content for all.

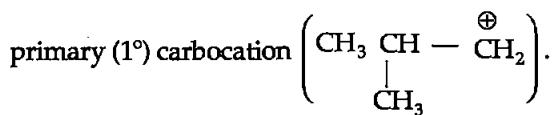
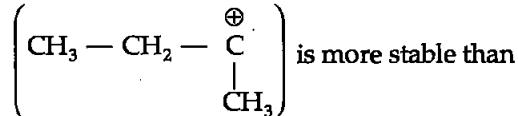
**Chemistry 2016 (Outside Delhi)****SET I**

Time allowed : 3 hours

Maximum marks : 70

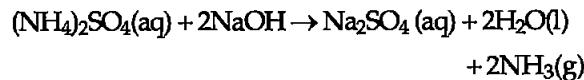
1. What type of magnetism is shown by a substance if moments of domains are arranged in same direction?\*\* [1]

2.  $\text{CH}_3 - \text{CH} - \text{CH}_2 - \text{Cl}$  and  $\text{CH}_3 - \text{CH}_2 - \text{CH} - \text{Cl}$ ,


which is more reactive towards  $\text{S}_{\text{N}}1$  reaction and why? [1]

Answer :  $\text{CH}_3 - \text{CH}_2 - \text{CH} - \text{Cl}$ , is more reactive

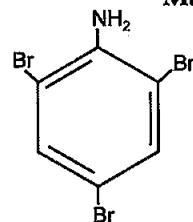



towards  $\text{S}_{\text{N}}1$  reaction as secondary ( $2^\circ$ ) carbonation formed as the reaction intermediate

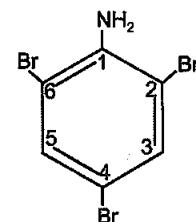


3. On adding  $\text{NaOH}$  to ammonium sulphate a colourless gas with pungent odour is evolved which forms a blue coloured complex with  $\text{Cu}^{2+}$  ion. Identify the gas. [1]

Answer : The gas evolved is ammonia ( $\text{NH}_3$ ).




Ammonia react with solution of  $\text{Cu}^{2+}$  ion to form a deep blue coloured complex,  $[\text{Cu}(\text{NH}_3)_4]^{2+}$ .


4. Write the main reason for the stability of colloidal solutions. [1]

Answer : All the colloidal particles in a given solution carry the same charge and the dispersion medium has an opposite and equal charge; the system as a whole being electrically neutral. This is the main reason for the stability of the colloidal solution.

5. Write the IUPAC name of the given compound. [1]



Answer :



2,4,6-Tribromoaniline.

6. When a coordination compound  $\text{CrCl}_3 \cdot 6\text{H}_2\text{O}$  is mixed with  $\text{AgNO}_3$ , 2 mole of  $\text{AgCl}$  are precipitated per mole of the compound. Write [2]

(i) Structural formula of the complex.

(ii) IUPAC name of the complex

Answer : (i) Structural formula of the complex is  $[\text{Cr}(\text{H}_2\text{O})_5\text{Cl}] \text{Cl}_2 \cdot \text{H}_2\text{O}$ , because two moles of chlorine are outside coordination entity to form two moles of  $\text{AgCl}$  from per mole compound.

(ii) Pentaquaachlorido Chromium(III) chloride monohydrate.

7. From the given cells : [2]

Lead storage cell, Mercury cell, Fuel cell and Dry cell

Answer the following :

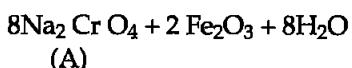
(i) Which cell is used in hearing aids ?  
 (ii) Which cell was used in Apollo Space Programme ?  
 (iii) Which cell is used in automobiles and inverters ?  
 (iv) Which cell does not have long life ?

Answer : (i) Hearing aid-Mercury cell.  
 (ii) Apollo Space Programme-Fuel cell.  
 (iii) Automobile and inverters-Lead storage cell.  
 (iv) Cell does not have long life-Dry cell.

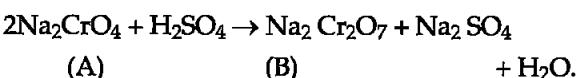
8. When chromite ore  $\text{FeCr}_2\text{O}_4$  is fused with  $\text{NaOH}$  in presence of air, a yellow coloured compound

\*\* Answer not given due to change in present syllabus.

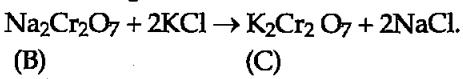
(A) is obtained which on acidification with dilute sulphuric acid gives a compound (B), compound (B) on reaction with KCl forms a orange coloured crystalline compound (C). [2]


(i) Write the formulae of the compounds (A), (B) and (C).  
(ii) Write one use of compound (C).

OR


Complete the following chemical equations :



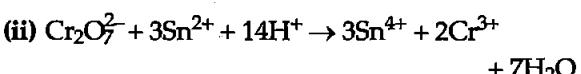
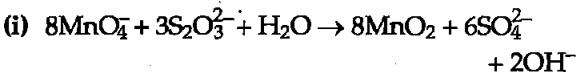

Answer : (i) On fusing chromite ore with Sodium hydroxide in presence of air, yellow coloured "sodium chromate" (A) is formed.



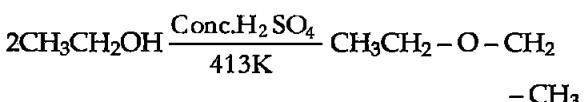
On acidification with dil.  $\text{H}_2\text{SO}_4$  it forms sodium dichromate (B).



Compound (B) i.e. sodium dichromate forms potassium dichromate, orange coloured crystals (C) on treating with KCl.

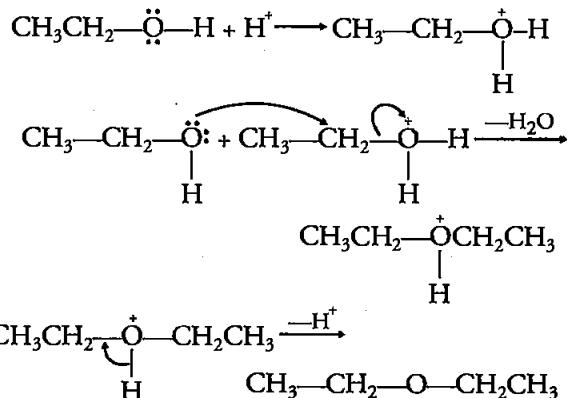




The formula of compounds are :


(A) Sodium chromate —  $\text{Na}_2\text{CrO}_4$   
(B) Sodium dichromate —  $\text{Na}_2\text{Cr}_2\text{O}_7$   
(C) Potassium dichromate —  $\text{K}_2\text{Cr}_2\text{O}_7$

(ii) Potassium dichromate,  $\text{K}_2\text{Cr}_2\text{O}_7$  is most commonly used as an oxidizing agent in various laboratory and industrial applications.

OR




9. Write the mechanism of the following reaction : [2]



Answer : Formation of ether from alcohol is a nucleophilic bimolecular reaction ( $\text{S}_{\text{N}}2$ ). A protonated alcohol is attacked by another alcohol molecule.

Reaction Steps :



10. For a reaction :  $2\text{NH}_3(\text{g}) \xrightarrow[\text{Rate} = k]{\text{Pt}} \text{N}_2(\text{g}) + 3\text{H}_2(\text{g})$

(i) Write the order and molecularity of this reaction.  
(ii) Write the unit of  $k$ . [2]

Answer : (i) For any reaction ; Rate =  $K$  [A] order  
[A] = concentration of reactant.

Hence its a zero order reactions and its molecularity is two.

(ii) Unit of  $K$  for a zero order reaction is  $\text{mol L}^{-1} \text{sec}^{-1}$ .

11. The rate constant for the first order decomposition of  $\text{H}_2\text{O}_2$  is given by the following equation :

$$\log k = 14.2 - \frac{1.0 \times 10^4}{T} K$$

Calculate  $E_a$  for this reaction and rate constant  $K$  if its half-life period be 200 minute. (Given :  $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ ) [3]

Answer : According to Arrhenius equation

$$\log k = \log A - \frac{1.0 \times 10^4}{T} K \quad \dots (i)$$

So equating similar terms in the equations

$$\log K = 14.2 - \frac{1.0 \times 10^4}{T} K \quad \dots (ii)$$

On comparing the equation no. (i) and (ii)

$$\frac{E_a}{2.303 RT} = \frac{1.0 \times 10^4}{T} K;$$

$$E_a = \frac{2.303 \times R \times T \times 1.0 \times 10^4}{T} K$$

$$\Rightarrow E_a = 2.303 \times 8.314 \text{ K}^{-1} \text{ Mol}^{-1} \times 1.0 \times 10^4 \text{ K}$$

$$= 19.14 \times 10^4 \text{ J Mol}^{-1} = 191.4 \text{ kJ mol}^{-1}$$

For a first order reaction :

$$t_{1/2} = \frac{0.693}{200}$$

... (iii)

$$t_{1/2} = 200 \text{ min}$$

$$K = \frac{0.693}{200} = 3.465 \times 10^{-3} \text{ min}^{-1}$$

12. (i) Differentiate between adsorption and absorption.  
(ii) Out of  $\text{MgCl}_2$  and  $\text{AlCl}_3$ , which one is more effective in causing coagulation of negatively charged sol and why?  
(iii) Out of sulphur sol and proteins, which one forms multimolecular colloids? [3]

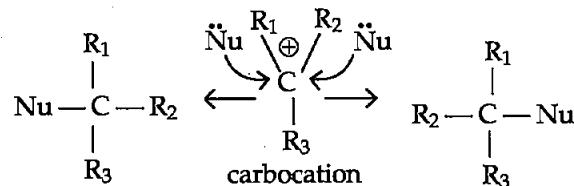
Answer : (i)

|    | Adsorption                                                                            | Absorption                                                                                                                                     |
|----|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | It is a surface phenomenon, Adsorbate molecules are held at the surface of adsorbent. | Absorption occurs in the bulk of absorbing substance.                                                                                          |
| 2. | Initially, rate of adsorption is rapid.                                               | Absorption occurs at uniform rate.                                                                                                             |
| 3. | The concentration of the adsorbent surface is much more than that in the bulk.        | Absorbed material is uniformly distributed throughout the bulk means concentration is same throughout and it is essentially a bulk phenomenon. |
| 4. | E.g., water vapours on silica gel.                                                    | E.g., Water vapours are absorbed by anhydrous $\text{CaCl}_2$ .                                                                                |

(ii) According to Hardy-Schulze law the ions carrying opposite charge to that on sol are responsible for coagulation of the sol. These are called active ions. Hence as the sol is negative,  $\text{Mg}^{2+}$  and  $\text{Al}^{3+}$  ions will cause coagulation.

As coagulation power of electrolyte is proportional to the valency of oppositely charged ion, so  $\text{AlCl}_3$  will be more effective than  $\text{MgCl}_2$ .

(iii) Sulphur sol will form the multimolecular colloid. A sol of sulphur consists of colloidal particles which are aggregates of  $\text{S}_8$  molecules.


13. Give reasons : [3]

(i) C-Cl bond length in chlorobenzene is shorter than C-Cl bond length in  $\text{CH}_3\text{-Cl}$ .  
(ii) The dipole moment of chlorobenzene is lower than that of cyclohexyl chloride.  
(iii)  $\text{S}_{\text{N}}1$  reactions are accompanied by racemization in optically active alkyl halides.

Answer : (i) C-Cl bond length in chlorobenzene is shorter than  $\text{CH}_3\text{-Cl}$ , C-Cl bond as in chlorobenzene due to resonance C-Cl bond has partial double bond character which reduces the bond length.

(ii) In cyclohexyl chloride, carbon in C-Cl bond is  $sp^3$  hybridised whereas in chlorobenzene C-Cl bond carbon is  $sp^2$  hybridised,  $sp^2$  is more electronegative than  $sp^3$  carbon. Hence C-Cl bond of chlorobenzene is less polar.

(iii) In  $\text{S}_{\text{N}}1$  reaction a carbocation intermediate is formed. In case of optically active alkyl halide the attack of nucleophile in the next step to carbocation can occur from both the faces of the trigonal planar species in equal probability. Thus 50 : 50 racemic mixture is obtained.

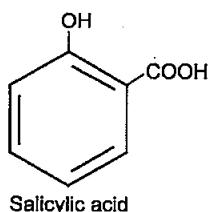
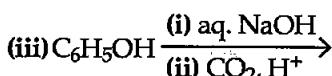
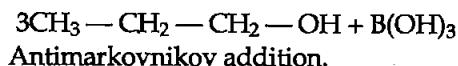
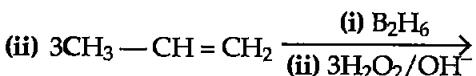
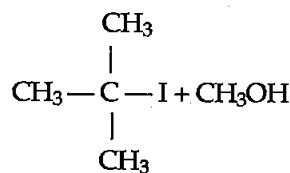
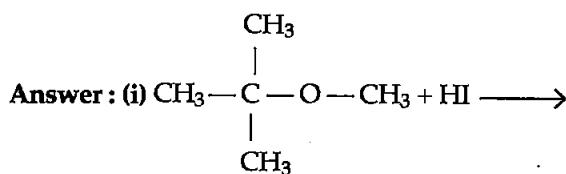
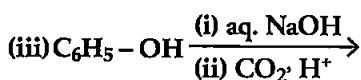
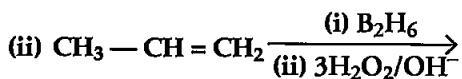
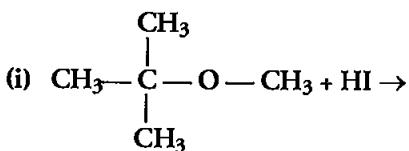


14. An element crystallizes in a f.c.c. lattice with cell edge of 250 pm. Calculate the density if 300 g of this element contain  $2 \times 10^{24}$  atoms. \*\* [3]

15. Give reasons : [3]

(i) Mn shows the highest oxidation state of +7 with oxygen but with fluorine it shows the highest oxidation state of +4  
(ii) Transition metals show variable oxidation states.  
(iii) Actinoids show irregularities in their electronic configurations.

Answer : (i) Mn shows the highest oxidation state of +7 with oxygen because it can form  $p\pi$ - $d\pi$  multiple bonds. On the other hand Mn shows










\*\*Answer not given due to change in present syllabus.

highest oxidation state of +4 with fluorine because it can form only single bond.

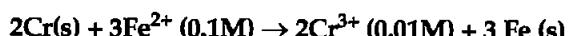
(ii) Transition metals show variable oxidation state because of use of ns and (n-1) d shell electrons while bonding as the shells have similar energy.

(iii) Actinoids show irregularities in their electronic configurations because 6d, 7s and 5f electrons or shells have less energy difference and electrons can be accommodated in any of them.

16. Write the main product(s) in each of the following reactions : [3]



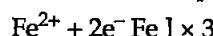
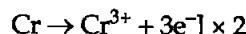
17. (i) Name the method of refining of metals such as Germanium.  
(ii) In the extraction of Al, impure  $\text{Al}_2\text{O}_3$  is


dissolved in conc.  $\text{NaOH}$  to form sodium aluminate and leaving impurities behind.  
What is the name of this process ?

(iii) What is the role of coke in the extraction of iron from its oxides ? [3]

Answer : (i) Zone refining method is used for refining of metals such as germanium which is based on the principle that the impurities are more soluble in the molten state (melt) than in the solid state of the metal.

(ii) Leaching : This method consists of treating the powdered ore with a suitable reagent which can selectively dissolve the ore but not the impurities.  
(iii) Coke act as a reducing agent and it reduces the iron ore hematite.



18. Calculate e.m.f. of the following cell at 298 K. [3]



Given :  $E^\circ (\text{Cr}^{3+} \mid \text{Cr}) = -0.74 \text{ V}$   $E^\circ (\text{Fe}^{2+} \mid \text{Fe}) = -0.44 \text{ V}$

Answer :  $\text{Cr} \mid \text{Cr}^{3+} (0.01\text{M}) \parallel \text{Fe}^{2+} (0.1\text{M}) \mid \text{Fe}_{(\text{s})}$ .

The half cell reactions for they given cell :



Hence  $n = 6$ ,  $T = 298 \text{ K}$ ,  $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ .

Nernst equation for the cell ;

$$E_{\text{cell}} = E_{\text{cell}}^\circ - \frac{2.303\text{RT}}{n\text{F}} \log \frac{[\text{Cr}^{3+}]^2}{[\text{Fe}^{2+}]^3}$$

$$E_{\text{cell}}^\circ = [\text{E}_R^\circ - \text{E}_L^\circ] \text{V}$$

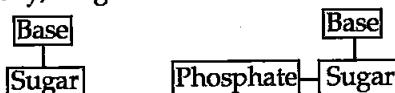
$$[-0.44 - (-0.74)] \text{V} = +0.30 \text{ V.}$$

$$E_{\text{cell}} = 0.30 \text{ V} - \frac{2.303 \times 8.314 \times 298}{6 \times 96500} \log \frac{[0.01]^2}{[0.1]^3}$$

$$= 0.30 \text{ V} - \frac{0.059}{6} \log \frac{[10^{-2}]^2}{[0.1]^3}$$

$$= 0.30 \text{ V} - \frac{0.059}{6} \log 10^{-1} \text{ V} = 0.30 \text{ V} - \frac{0.059}{6} (-1) \text{ V}$$

$$= 0.30 \text{ V} + \frac{0.059}{6} \text{ V} = 0.30 + 0.0098$$

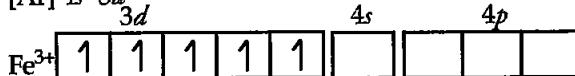

$$= 0.3098 \text{ V}$$

19. (i) Write the name of two monosaccharides obtained on hydrolysis of lactose sugar.  
(ii) Why Vitamin C cannot be stored in our body?  
(iii) What is the difference between a nucleoside and nucleotide ? [3]

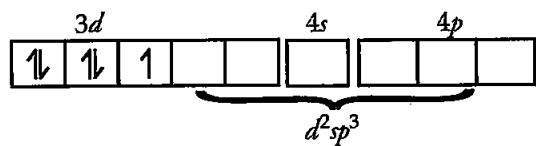
Ans : (i) The two monosaccharides are  $\beta$ -D-galactose and  $\beta$ -D-glucose.

(ii) Vitamin C is, a water soluble vitamin and hence get excreted by urine. So it cannot be stored in body and needs to be supplemented regularly.

(iii) When a base (purine or pyrimidine) get attached to 1' position of a pentose sugar a nucleoside is formed. When a nucleoside is further linked to phosphoric acid at 5' position of sugar moiety, we get a nucleotide.




20. (a) For the complex  $[\text{Fe}(\text{CN})_6]^{3-}$ , write the hybridization type, magnetic character and spin nature of the complex. (At number Fe = 26).


(b) Draw one of the geometrical isomers of the complex  $[\text{Pt}(\text{en})_2\text{Cl}_2]^{2+}$ , which is optically active? [3]

Answer : (a)  $[\text{Fe}(\text{CN})_6]^{3-}$ , Fe, Z = 26     $[\text{Ar}] 4s^2 3d^6$

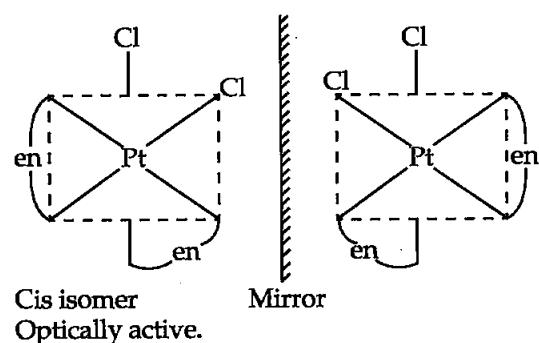
Fe has +3 oxidation state : Electronic configuration;  $[\text{Ar}] 4s^0 3d^5$



$\text{CN}^-$  is a strong field ligand hence pairing will take place to accommodate 6 pair of ligand electrons.

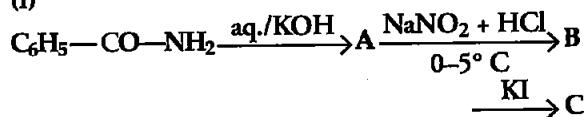


Hence the complex has  $d^2sp^3$  hybridization.

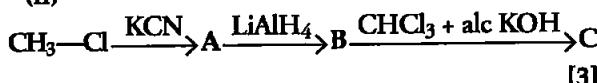

Type : Octahedral complex, inner orbital complex.

Magnetic character : One unpaired electron hence paramagnetic.

It will have a total electron spin moment of 1 electron :

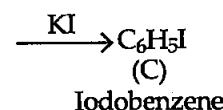
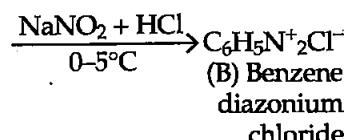
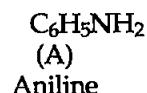

$$(\mu) = \sqrt{1(1+2)} = \sqrt{3} \text{ BM, } \therefore \text{ Low spin complex}$$

(b)  $[\text{Pt}(\text{en})_2\text{Cl}_2]^{2+}$ , that is isomer is optically active.

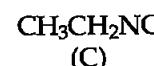
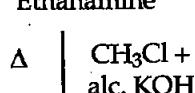
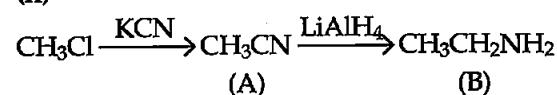



21. Write the structure of A, B and C in the following :

(i)

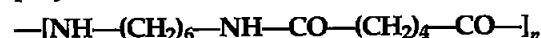





(ii)


[3]

Answer : (i)  $\text{C}_6\text{H}_5-\text{CO}-\text{NH}_2 \xrightarrow{\text{Br}_2/\text{aq. KOH}}$



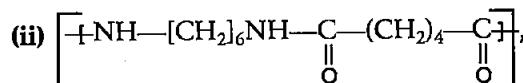

(ii)



22. (i) What is the role of  $t$ -butyl peroxide in the polymerization of ethane ?

(ii) Identify the monomers in the following polymer :




(iii) Arrange the following polymers in the increasing order of their intermolecular forces.

Polystyrene, Terylene, Buna-S. [3]

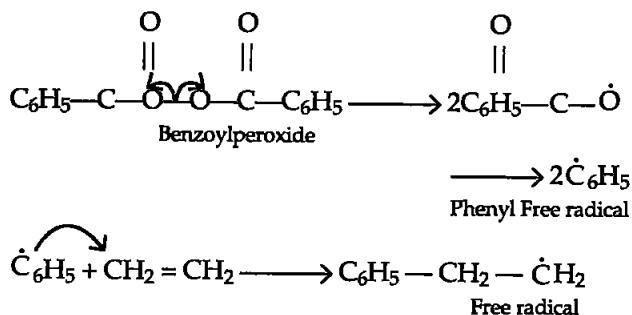
OR

Write the mechanism of free radical polymerisation of ethene.

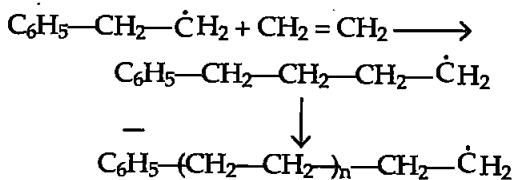
Ans : (i) Polymerisation of ethene to low density polyethene (L.D.P.) needs presence of a free radical generating initiator (catalyst).  $t$ -butyl peroxide helps in starting the chain of radical formations.



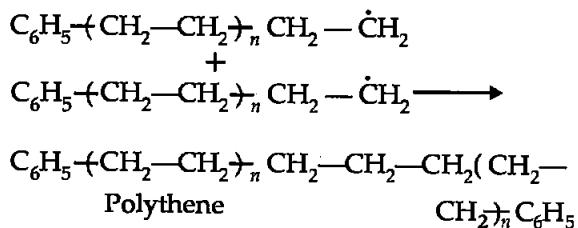
This is Nylon-6, 6 and its monomers are :  
hexamethylene diamine


$\text{H}_2\text{N}-(\text{CH}_2)_6-\text{NH}_2$  and adipic acid  
 $\text{HOOC}-(\text{CH}_2)_4-\text{COOH}$ .

(iii) Buna-S < Polystyrene < Terylene  
(Elastomer)(Thermoplast) (Fibre)


OR

**Mechanism of Polymerisation of ethene.**


(1) **Initiation** : The process starts with the formation of a free radical by addition of catalyst free radical like phenyl or benzoyl etc., generating a new and larger free radical.



(2) **Propagation** : The radical reacts with another molecule of ethene thus forming a bigger radical molecule. The process continues till the required length of chain we need.

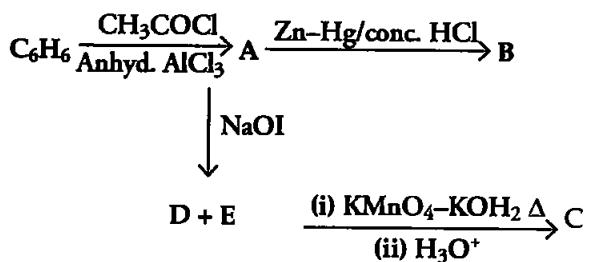


(3) **Chain Termination** : When free radical combine with each other the chain terminates resulting in formation of a polymer.



23. Due to hectic and busy schedule Mr. Angad made his life full of tensions and anxiety. He started taking sleeping pills to overcome the depression without consulting the doctor. Mr. Deepak a close friend of Mr. Angad advised him to stop taking sleeping pills and suggested to change his lifestyle by doing

Yoga, meditation and some physical exercise. Mr. Angad followed his friend's advice and after few days he started feeling better. After reading the above passage answer the following : [4]


- What are the values (at least two) displayed by Mr. Deepak?\*\*
- Why is it not advisable to take sleeping pills without consulting doctor?
- What are tranquilizers ? Give two examples.

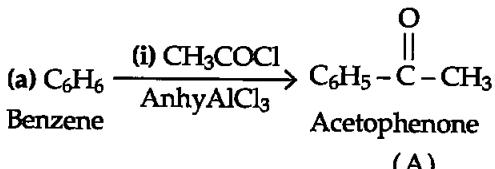
**Answer :**

(ii) Sleeping pills are tranquilizers and may cause harmful side effects as they slow down the working of the brain and nervous system. Hence a doctor must be consulted to regularise the doses of such drugs.

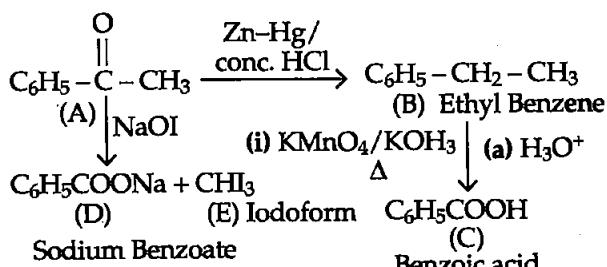
(iii) Tranquilizers are a class of drugs or chemicals which are used to treat stress and mental disease. Example : Iproniazid and Equanil.

24. (a) Write the structures of A, B, C, D and E in the following reactions : [5]



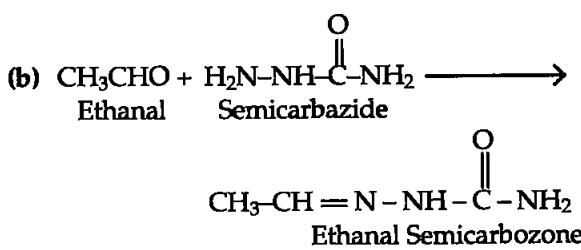
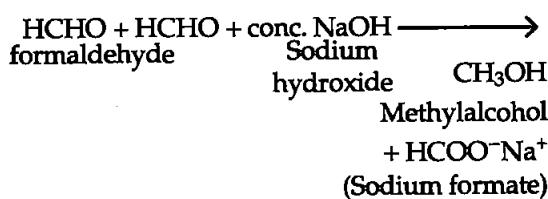

**OR**

- Write the chemical equation for the reaction involved in Cannizzaro reaction.
- Draw the structure of the semicarbazone of ethanal.
- Why  $\text{pK}_a$  of  $\text{F}-\text{CH}_2-\text{COOH}$  is lower than that of  $\text{Cl}-\text{CH}_2-\text{COOH}$  ?
- Write the product in the following reaction;

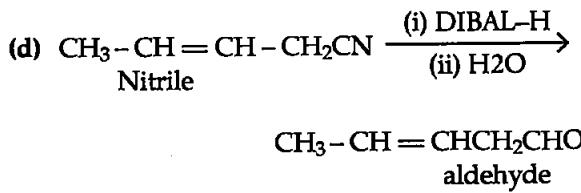



- How can you distinguish between propanal and propanone ?

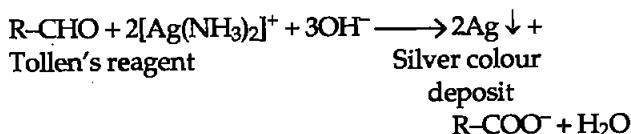
**Answer :**


\*\* Answer is not given due to change in the present syllabus




OR


(a) For aldehydes which do not have  $\alpha$ -hydrogen atom self oxidation and reduction takes place in presence of concentrated alkali. This produces one mole of alcohol and one mole of salt of carboxylic acid. This is called Cannizzaro's reaction.



(c) pKa of  $\text{F}-\text{CH}_2-\text{COOH}$  is lower than that of pKa of  $\text{Cl}-\text{CH}_2-\text{COOH}$  as  $\text{F}-\text{CH}_2-\text{COOH}$  is a stronger acid. This is because of higher electronegativity of F atom than Cl atom.

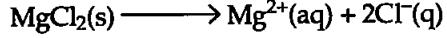


(e) Tollen's reagent will give a positive test of silver mirror formation with propanal, while propane does not give this test since aldehydes can oxidise Tollen's reagent to metallic silver but ketones cannot.



25. (a) Calculate the freezing point of solution when 1.9 g (of  $\text{MgCl}_2$  ( $M = 95 \text{ g/mol}$ ) was dissolved in 50 g of water, assuming  $\text{MgCl}_2$  undergoes complete ionization. [5]

$$(K_f \text{ for water} = 1.86 \text{ K kg mol}^{-1})$$


(b) (i) Out of 1 M glucose and 2 M glucose, which one has a higher boiling point and why?  
(ii) What happens when the external pressure applied becomes more than the osmotic pressure of solution?

OR

(a) When 2.56 g of sulphur was dissolved in 100 g of  $\text{CS}_2$ , the freezing point lowered by 0.383 K. Calculate the formula of sulphur ( $S_x$ ). [5]  
 $(K_f \text{ for } \text{CS}_2 = 3.83 \text{ K kg mole}^{-1}$ , Atomic mass of sulphur = 32 g/mol $^{-1}$ ).

(b) Blood cells are isotonic with 0.9% sodium chloride solution what happens if we place blood cells in a solution containing.  
(i) 1.2% sodium chloride solution?  
(ii) 0.4% sodium chloride solution?

Answer : (a)  $\text{MgCl}_2$  on ionisation gives 3 ions each mole.



Hence Vant's Hoff factor,  $i = 3$

$$\Delta T_f = T_f(\text{water}) - T_f(\text{MgCl}_2) = i \times K_f \times m$$

$$m(\text{molality}) = \frac{1.9 \text{ g} \times 1000 \text{ g}}{95 \text{ g mol}^{-1} \times 50 \text{ g}} = 0.4 \text{ mole}$$

$$\therefore T_f(\text{water}) = 273 \text{ K}$$

$$\begin{aligned}
 \text{Hence } \Delta T_f &= 273 \text{ K} - T_f(\text{MgCl}_2) \\
 &= 3 \times 1.86 \text{ K kg mol}^{-1} \times 0.4 \text{ mol kg}^{-1} \\
 &= 2.23 \text{ K}
 \end{aligned}$$

$$T_f(\text{MgCl}_2) = (273 - 2.23) \text{ K} = 270.77 \text{ K}$$

(b) (i) 2M glucose will have higher boiling point because boiling point of a solution of a non-volatile liquid increases with increase in concentration

(ii) When the external pressure exerted on the solution is higher than the osmotic pressure, pure solvent starts flowing out of the solution through the semi permeable membrane. This process is known as reverse osmosis.

OR

(a) Weight of sulphur ( $W_2$ ) = 2.5 g,  $W_1(\text{CS}_2)$  = 100 g,

$$\Delta T_f = 0.383 \text{ K}$$

$$M_2 = 32 \text{ g/mol}$$

$$K_f = 3.83 \text{ K kg/mol}$$

Applying the formula

$$\Delta T_f = \frac{k_f \times W_2 \times 1000}{W_1 \times M}$$

$$0.383 = \frac{3.83 \times 2.56 \times 1000}{100 \times M}$$

$$M = 256 \text{ g/mol}$$

**Formula of Sulphur :** One atom of S = 32 g mol<sup>-1</sup>  
atoms of S in molecule

$$= \frac{256 \text{ g mol}^{-1}}{32 \text{ g mol}^{-1}} = 8.$$

Formula = S<sub>8</sub>

(b) (i) 1.2 % Sodium chloride is hypertonic than blood cells, hence cells will shrink. Plasmolysis will take place.

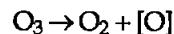
(ii) 0.4% Sodium chloride solution is hypotonic than blood cell, so cells will swell. Endo osmosis will take place.

26. (a) Account for the following : [5]

(i) Ozone is thermodynamically unstable.  
(ii) Solid PCl<sub>5</sub> is ionic in nature.\*\*  
(iii) Fluorine forms only one oxoacid HOF.

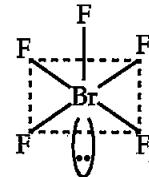
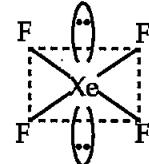
(b) Draw the structure of : (i) BrF<sub>5</sub>, (ii) XeF<sub>4</sub>

OR


(i) Compare the oxidising action of F<sub>2</sub> and Cl<sub>2</sub> by considering parameters such as bond dissociation enthalpy, electron gain enthalpy and hydration enthalpy.

(ii) Write the conditions to maximize the yield of H<sub>2</sub>SO<sub>4</sub> by contact process.

(iii) Arrange the following in the increasing order of property mentioned.



(a) H<sub>3</sub>PO<sub>3</sub>, H<sub>3</sub>PO<sub>4</sub>, H<sub>3</sub>PO<sub>2</sub> (Reducing Characters)\*\*(b) NH<sub>3</sub>, PH<sub>3</sub>, AsH<sub>3</sub>, SbH<sub>3</sub>, BiH<sub>3</sub> (Base strength)\*\*

**Answer :** (a) (i) Ozone easily decompose to give nascent oxygen :



because the reaction is exothermic, ( $\Delta H$  = negative), and results in the increases in entropy ( $\Delta S$  = positive). Overall Gibb's energy change is quite high and negative.

(iii) Due to high electronegativity and small size fluorine forms only one oxoacid, HOF.

(b) (i) BrF<sub>5</sub>(ii) XeF<sub>4</sub>

OR

(i) Fluorine is a much stronger oxidizing agent than chlorine. The oxidizing power depends on three factors.

(a) Bond dissociation energy.  
(b) Electron gain enthalpy.  
(c) Hydration enthalpy.

The electron gain enthalpy of chlorine is more negative than that of Fluorine. However, the bond dissociation energy of fluorine is much lesser than that of chlorine. Also, because of its small size, the hydration energy of fluorine is much higher than that of chlorine. Therefore, the latter two factors compensate more than for the less negative electron gain enthalpy of fluorine. Thus, fluorine is a much stronger oxidizing agent than chlorine.

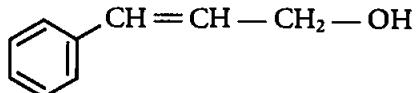
(ii) The condition necessary to maximize the yield of H<sub>2</sub>SO<sub>4</sub> by contact process are.

(a) A moderately low temperature of about 720 K and high pressure of about 2 bar yields maximum H<sub>2</sub>SO<sub>4</sub> acid.  
(b) It is an exothermic reaction and forward reaction causes decrease in pressure.

**Note :** All questions are same in outside Delhi Set II and III and Delhi Set-I, II and III

\*\* Answer is not given due to change in present syllabus.




**Chemistry 2017 (Outside Delhi)****SET II**

Time allowed : 3 hours

Maximum marks : 70

**Note :** Except for the following questions, all the remaining questions have been asked in previous sets.

3. Write the IUPAC name of the following compound. [1]

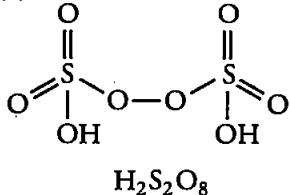


Answer : 3-Phenyl-prop-2-en-1-ol

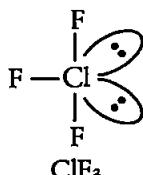
5. Out of and , which is an example of vinylic halide ? [1]

Answer : is an example of vinylic halide.

6. Using IUPAC norms write the formulae for the following :


(a) Tris (ethane-1, 2-diamine) chromium (III) chloride.  
(b) Potassium tetrahydroxozincate (II). [2]

Answer : (a)  $[\text{Cr}(\text{en})_3]\text{Cl}_3$   
(b)  $\text{K}_2[\text{Zn}(\text{OH})_4]$


7. Draw the structures of the following : [1]

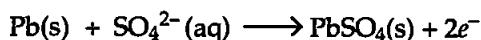
(a)  $\text{H}_2\text{S}_2\text{O}_8$   
(b)  $\text{ClF}_3$

Answer : (a)

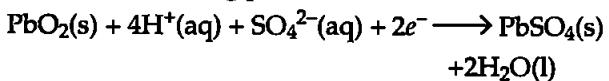



(b)




8. Write the name of the cell which is generally used in inverters. Write the reactions taking place at the anode and the cathode of this cell. [2]

**Answer :** Lead storage battery is commonly used in inverters.

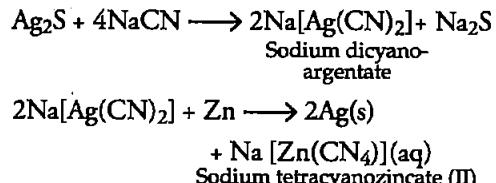

**Reactions taking place at anode**



**The overall reaction at anode is**



**Reactions taking place at cathode.**



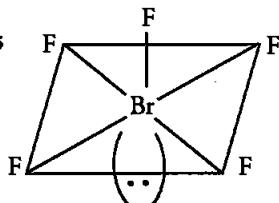

11. (a) Write the principle of vapour phase refining.  
(b) Write the role of dilute  $\text{NaCN}$  in the extraction of silver.  
(c) What is the role of collectors in the froth floatation process ? Give an example of a collector. [2]

**Answer :**

(a) **Vapour phase refining :** This method is based on the principle that certain metals are converted to their volatile compounds while the impurities are not affected during compound formation-C.

(b)  $\text{NaCN}$  is used to leach the silver ore in the presence of air. Pure silver is obtained by replacement in the process of extraction of silver.

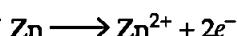



(c) In the froth floatation process, collectors enhances the non-wettability of the mineral particles. Example of collectors are pine oil, eucalyptus oil, fatty acids etc.

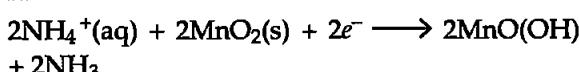


**Answer :**

(a)  $\text{XeF}_4$


(b)  $\text{BrF}_5$




7. Write the name of the cell which is generally used in transistors. Write the reactions taking place at the anode and the cathode of this cell. [2]

**Answer :** Dry cells are used in transistors.

At anode



At cathode



9. Using IUPAC norms write the formulae for the following :

(a) Potassium trioxalatoaluminate (III).  
 (b) Dichloridobis (ethane-1, 2-diamine) cobalt (III) [2]

**Answer :**

(a)  $\text{K}_3[\text{Al}(\text{Ox})_3]$   
 (b)  $[\text{CoCl}_2(\text{en})_2]^+$

14. (a) Based on the nature of intermolecular forces, classify the following solids :\*\*

Sodium sulphate, Hydrogen

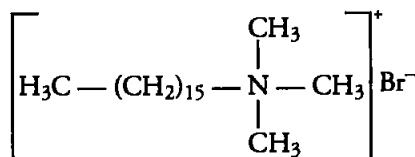
(b) What happens when  $\text{CdCl}_2$  is doped with  $\text{AgCl}$ ?\*\*  
 (c) Why do ferrimagnetic substances show better magnetism than antiferromagnetic substances?\*\* [3]

15. (a) Write the principle of electrolytic refining.  
 (b) Why does copper obtained in the extraction from copper pyrites have a blistered appearance ?  
 (c) What is the role of depressants in the froth floatation process ? [3]

**Answer :**

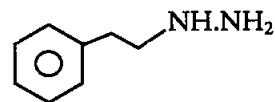
(a) **Electrolytic refining :** This method is based on the principle of electrolysis. In this method impure metal is made to act as anode and a strip of same metal in pure form is used as cathode. Both anode and cathode are placed in a suitable electrolytic bath containing soluble salt of same metals.

(b) In the extraction of copper from  $\text{CuFeS}_2$ ,  $\text{SO}_2$ ,  $\text{N}_2$  and  $\text{O}_2$  escape from the metal. As the metal solidifies, the dissolved gases escape producing blisters on the metal surface, which provides blister appearance to copper.


(c) Depressants are used to prevent certain types of particles from forming the froth with air bubbles. For example :  $\text{NaCN}$  can be used as a depressant in the separation of  $\text{ZnS}$  and  $\text{PbS}$ .

19. Define the following :

(a) Cationic detergents  
 (b) Broad spectrum antibiotics  
 (c) Tranquilizers [3]


**Answer :**

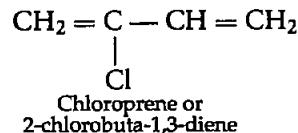
(a) **Cationic detergents :** These are the quaternary ammonium salts of amines with acetates, chlorides or bromides as anions. The cationic part possesses a long hydrocarbon chain with a positive charge on nitrogen atom. Example. Cetyltrimethyl ammonium chloride.



(b) **Broad spectrum antibiotics :** Antibiotics which kills or inhibit a wide range of gram-positive and gram-negative bacteria are called broad spectrum antibiotics. Example Chloramphenicol.

(c) **Tranquilizers :** The chemical substances used for the treatment of stress, fatigue, mild and severe mental diseases are called tranquilizers. Example : Phenelzine (Nardil).




20. Write the structures of the monomers used for getting the following polymers :

(a) Teflon  
 (c) Neoprene [3]

**Answer :**

(a) **Monomer of Teflon :**  
 $\text{F}_2\text{C} = \text{CF}_2$   
 Tetrafluoroethene

(c) **Neoprene (monomer) :**



\*\*Answer is not given due to the change in present Syllabus.

**Chemistry 2017 (Delhi)****SET I**

Time allowed : 3 hours

Maximum marks : 70

**SECTION-A**

1. Write the formula of an oxo-anion of Manganese (Mn) in which it shows the oxidation state equal to its group number. [1]

Answer : Manganese belongs to group number 7 and its oxidation state in  $\text{KMnO}_4$  is +7 i.e.,



$$1 + x + 4 = 0$$

$$1 + x - 8 = 0$$

$$x = 7$$

Thus, the formula of the oxo-anion is  $\text{KMnO}_4$ .

2. Write IUPAC name of the following compound :



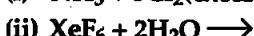
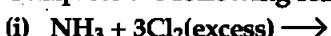
Answer : N-Ethyl-N-methylethanamine.

3. For a reaction  $\text{R} \rightarrow \text{P}$ , half-life ( $t_{1/2}$ ) is observed to be independent of the initial concentration of reactants. What is the order of reaction ? [1]

Answer : Since half life is independent of the initial concentration of the reactants. Thus it is a first order Reaction. Formula for half-life of the first order reaction.

$$t_{1/2} = \frac{0.693}{K}$$

4. Write the structure of 1-bromo-4-chlorobut-2-ene. [1]



Answer :  $\text{BrCH}_2\text{CH}=\text{CHCH}_2\text{Cl}$

5. Write one similarity between physisorption and Chemisorption. [1]

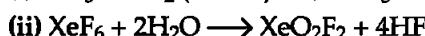
Answer : Physisorption and chemisorption both are the surface phenomenon and both increases the surface area during the process of adsorption.

**SECTION-B**

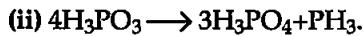
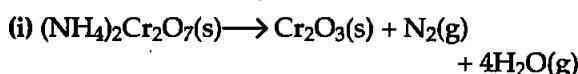
6. Complete the following reactions :



OR


What happens when

(i)  $(\text{NH}_4)_2\text{Cr}_2\text{O}_7$  is heated ?



(ii)  $\text{H}_3\text{PO}_3$  is heated ?

Write the equations. [2]

Answer :



OR

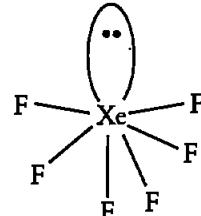
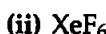
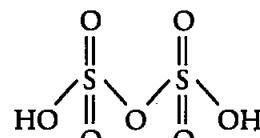


7. Define the following terms :

(i) Colligative properties

(ii) Molality (m) [2]

Answer : (i) Colligative properties are those which depends on number of moles of solute irrespective of their Nature.




(ii) Molality is defined as the number of moles of solute dissolved per kg of the solvent. It is independent of temperature.

$$\text{Molality} = \frac{\text{Moles of solute}}{\text{Mass of solvent in kilograms}}$$

8. Draw the structures of the following :



Answer :



9. Calculate the degree of dissociation ( $\alpha$ ) of acetic acid if its molar conductivity ( $\Lambda_m$ ) is  $39.05 \text{ S cm}^2 \text{ mol}^{-1}$

Given  $\Lambda^\circ(\text{H}^+) = 349.6 \text{ S cm}^2 \text{ mol}^{-1}$  and  $\Lambda^\circ(\text{CH}_3\text{COO}^-) = 40.9 \text{ S cm}^2 \text{ mol}^{-1}$  [2]

Answer : Given : Molar conductivity ( $\Lambda_m$ ) for acetic acid =  $39.05 \text{ S cm}^2 \text{ mol}^{-1}$ .

$$\Lambda^\circ(\text{H}^+) = 349.6 \text{ S cm}^2 \text{ mol}^{-1}$$

$$\Lambda^\circ(\text{CH}_3\text{COO}^-) = 40.95 \text{ S cm}^2 \text{ mol}^{-1}$$

We know that :

$$\Delta^\circ_m (\text{CH}_3\text{COOH}) = \Delta^\circ (\text{H}^+) + \Delta^\circ (\text{CH}_3\text{COO}^-)$$

$$390.5 = 349.6 + 40.9$$

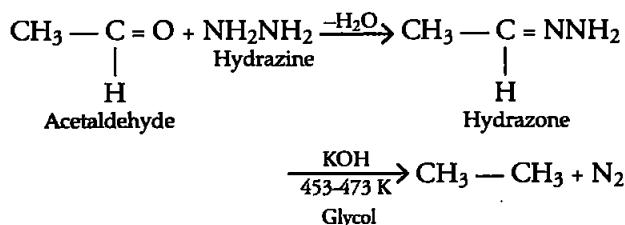
$$390.5 = 390.5$$

also;

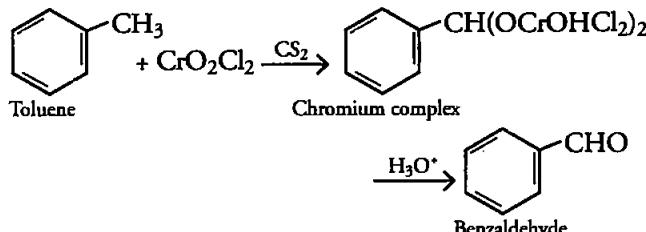
$$\alpha = \frac{\Delta_m}{\Delta_m^\circ}$$

$$\alpha = \frac{39.05}{390.5}$$

$$\alpha = 0.1$$


Thus, the degree of dissociation of acetic acid is 0.1.

10. Write the equations involved in the following reactions :


(i) Wolff-Kishner reduction

(ii) Etard reaction. [2]

Answer : (i) Wolff-Kishner reduction :



(ii) Etard Reaction :



### SECTION-C

11. A 10% solution (by mass) of sucrose in water has freezing point of 269.15 K. Calculate the freezing point of 10% glucose in water, if freezing point of pure water is 273.15 K.

[Given : (Molar mass of sucrose = 342 g mol<sup>-1</sup>)

(Molar mass of glucose = 180 g mol<sup>-1</sup>) [3]

Answer : Given : Freezing point of = 269.15 K

10% solution of glucose

Freezing point of pure water = 273.15 K

Molar mass of sucrose = 342 g mol<sup>-1</sup>.

Molar mass of glucose = 180 g mol<sup>-1</sup>.

We know that :

$$\Delta T_f = K_f \times m$$

$$m = \frac{W_2 \times 1000}{M_2 \times M_1}$$

For the sucrose solution :

$$273.15 - 269.15 = \frac{K_f \times 10 \times 1000}{342 \times 90}$$

$$4 \times 242 \times 90 = K_f \times 10 \times 1000$$

$$\frac{4 \times 342 \times 90}{10 \times 1000} = K_f$$

$$K_f = 12.3 \text{ K kg/mol}$$

For the glucose solution :

$$\begin{aligned} \Delta T_f &= K_f \times m \\ &= \frac{12.3 \times 10 \times 1000}{180 \times 90} \end{aligned}$$

$$\Delta T_f = 7.6 \text{ K}$$

Thus

$$T_f = 273.15 - 7.6$$

$$T_f = 265.5 \text{ K}$$

The freezing point of 10% glucose in water is 265.5 K.

12. (a) Calculate the mass of Ag deposited at cathode when a current of 2 amperes was passed through a solution of  $\text{AgNO}_3$  for 15 minutes.

Given : Molar mass of Ag = 108 g mol<sup>-1</sup>,  
1F = 96500 C mol<sup>-1</sup>)

(b) Define fuel cell [3]

Answer :

(a) Given :

Current = 2 amperes

Time = 15 minutes

Molar mass of Ag = 108 g mol<sup>-1</sup>

1F = 96500 C mol<sup>-1</sup>

Amount of metal deposited (m) = ZQ

$$Q = It$$

$$= 2 \times 15 \times 60 = 1800 \text{ C}$$

Silver deposited

$$\text{Ag}^+ + 2e^- \rightarrow \text{Ag(s)}$$

1 mole of electron or 1 × 96500 C of current deposit silver = 108 g

1800 C of current will deposit

$$= \frac{108 \times 1800}{96500}$$

Amount of Ag deposited = 2.01g

(b) Fuel cell is the cell which converts the energy of combustion of fuels directly into electrical energy.

13. (i) What type of isomerism is shown by the complex  $[\text{Co}(\text{NH}_3)_6\text{Cr}(\text{CN})_6]$  ?

(ii) Why a solution of  $[\text{Ni}(\text{H}_2\text{O})_6]^{2+}$  is green while a solution of  $[\text{Ni}(\text{CN})_4]^{2-}$  is colourless ? (At no. of Ni = 28)

(iii) Write the IUPAC name of the following complex : [3]

$$[\text{Co}(\text{NH}_3)_5(\text{CO}_3)]\text{Cl}_2$$

Answer :

(i) Both shows coordination isomerism because both cationic and anionic entities and isomers differ in the distribution of ligands in the coordination entity of cationic and anionic part.

(ii) In  $[\text{Ni}(\text{H}_2\text{O})_6]^{2+}$  Ni is in +2 oxidation state

with electronic configuration  $3d^8$ . In the presence of weak ligand  $H_2O$  the two unpaired electrons do not pair up and hence the complex has two unpaired electrons. Therefore, it is coloured and shows  $d-d$  transitions which absorbs red light and emits green complimentary light.

In case of  $[Ni(CN)_4]^{2-}$  Ni also shows +2 oxidation state but CN ligand is strong ligand and two unpaired electrons undergo pairing, so no  $d-d$  transitions takes place and it shows no colour.

(iii) Pentaamminecarbonatocobalt(III) chloride.

14. Write one difference in each of the following :

(i) Lyophobic sol and Lyophilic sol.

(ii) Solution and Colloid

(iii) Homogeneous catalysis and Heterogeneous catalysis. [3]

Answer :

(i) Lyophobic colloidal sols are not hydrated and have weak affinity with the dispersion medium whereas lyophilic colloidal sols are heavily hydrated and have strong affinity with the dispersion medium.

(ii) Solution is a homogeneous mixture of solute and solvent whereas colloid is the heterogeneous mixture of dispersed phase and dispersion medium.

(iii) Homogeneous catalysis is the catalysis in which the reactants and the catalysts are in the same phase whereas in the heterogeneous catalysis the reactants and the catalysts are in the different phases.

15. Following data are obtained for reaction :



| t/s                          | 0                    | 300                  | 600                  |
|------------------------------|----------------------|----------------------|----------------------|
| $[N_2O_5]/\text{mol L}^{-1}$ | $1.6 \times 10^{-2}$ | $0.8 \times 10^{-2}$ | $0.4 \times 10^{-2}$ |

(a) Shows that it follows first order reaction.

(b) Calculate the half-life.

(Given  $\log 2 = 0.3010$ ,  $\log 4 = 0.6021$ ) [3]

Answer :

$$\begin{aligned}
 (a) \quad K &= 2.303/t \log [A_0]/[A] \\
 &= 2.303/300 \log 1.6 \times 10^{-2}/0.8 \times 10^{-2} \\
 &= 2.303/300 \log 2 = 2.31 \times 10^{-3} \text{ s}^{-1} \\
 &= \text{At } 600 \text{ s, } K = 2.303/t \log [A_0]/[A] \\
 &= 2.303/300 \log 1.6 \times 10^{-2}/0.4 \times 10^{-2} \\
 &= 2.303/600 \log 4 = 2.31 \times 10^{-3} \text{ s}^{-1}
 \end{aligned}$$

Since K is constant when using first order equation therefore, it follows first order kinetics.

$$(b) \quad t_{1/2} = 0.693/k$$

$$= 0.693/2.31 \times 10^{-3} = 300 \text{ s}$$

Thus, the half life of the reaction is 300 s.

16. Following compounds are given to you :

2-Bromopentane, 2-Bromo-2-methylbutane,

### 1-Bromopentane

- Write the compound which is most reactive towards  $S_N2$  reaction.
- Write the compound which is optically active.
- Write the compound which is most reactive towards  $\beta$ -elimination reaction. [3]

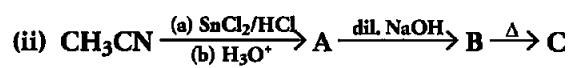
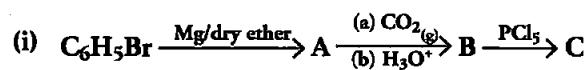
Answer : (i) 1-Bromopentane is most reactive towards  $S_N2$  reaction as it follows the order  $1^\circ > 2^\circ > 3^\circ$ .

(ii) 2-Bromopentane is optically active.

(iii) 2-Bromo-2-methylbutane is most reactive towards  $\beta$ -elimination reaction.

17. (a) Write the principle of method used for the refining of germanium.

(b) Out of  $PbS$  and  $PbCO_3$  (ores of lead), which one is concentrated by froth floatation process preferably ?



(c) What is the significance of leaching in the extraction of aluminium ? [3]

Answer : (a) Zone refining method is used for the refining of germanium and it is based on the principle that the impurities are more soluble in the melt than in the solid state of the metal.

(b)  $PbS$ , Sulphide ore has more tendency to stick to the oil which comes on the surface being lighter and easily skimmed off so  $PbS$  is concentrated by froth floatation method.

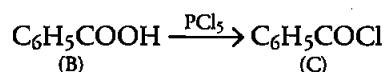
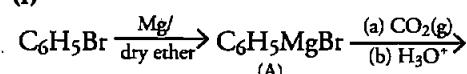
(c) Leaching of alumina is done to remove the impurities like  $SiO_2$  by using  $NaOH$  solution and pure alumina is obtained.

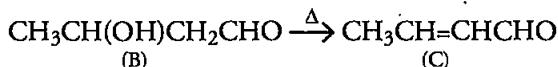
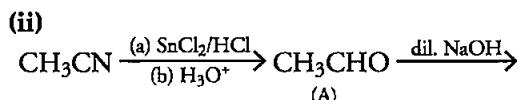
18. Write structures of compounds A, B and C in each of the following reactions : [3]



OR

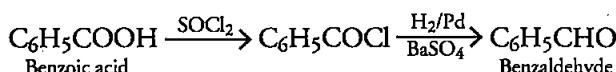
Do the following conversions in not more than two steps :



(a) Benzoic acid to Benzaldehyde

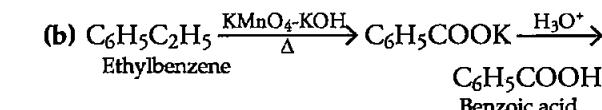


(b) Ethyl benzene to Benzoic acid

(c) Propanone to Propene

Answer :


(i)

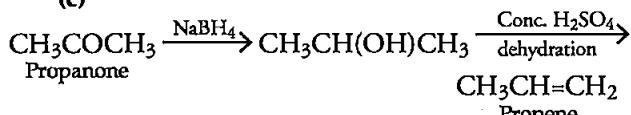





OR

(a)




Benzoic acid

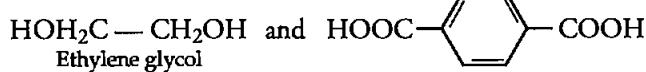


Ethylbenzene

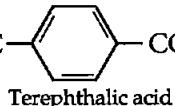
Benzoic acid

(c)




Propanone

Propene


19. Write the structure of the monomers used for getting the following polymers :

(i) Dacron [3]

Answer : (i) Monomers of Dacron :



Ethylene glycol



21. Give reasons :

- Thermal stability decreases from  $\text{H}_2\text{O}$  to  $\text{H}_2\text{Te}$ .
- Fluoride ion has higher hydration enthalpy than chloride ion.
- Nitrogen does not form pentahalide.\*\* [3]

Answer :

(i) As we move down in a group atomic radius increases as a result bond length increases. Larger the bond length lesser will be the bond dissociation enthalpy. So thermal stability decreases from O to Te.

(ii) Fluoride ion is the smallest ion in the group and it has high charge density and charge size ratio. That is why it has high hydration enthalpy.

## SECTION-E

24. (a) Account for the following :

- Transition metals form large number of complex compounds.
- The lowest oxide of transition metal is basic whereas the highest oxide is amphoteric or acidic.
- $E^\circ$  value for the  $\text{Mn}^{3+}/\text{Mn}^{2+}$  couple is highly positive (+1.57 V) as compare to  $\text{Cr}^{3+}/\text{Cr}^{2+}$ .

\*\* Answer is not given due to change in present syllabus.

(b) Write one similarity and one difference between the chemistry of lanthanoid and actinoid elements. [5]

OR

- (i) How is the variability in oxidation states of transition metals different from that of the *p*-block elements ?  
(ii) Out of  $\text{Cu}^+$  and  $\text{Cu}^{2+}$ , which ion is unstable in aqueous solution and why ?  
(iii) Orange colour of  $\text{Cr}_2\text{O}_7^{2-}$  ion changes to yellow when treated with an alkali. Why ?

(b) Chemistry of actinoids is complicated as compared to lanthanoids. Give two reasons.

Answer :

- Transition metals forms large number of complexes due to :

  - Small size of atoms and ions of transition metals.
  - High nuclear charge.
  - Presence of incompletely filled *d*-orbitals.

- As the oxidation state increases the size of ion goes on decreasing thus the covalent character increases as a result of this amphoteric and acidic strength increases. While in case of lower oxides of transition metals ionic size increases and thus basic character increases.

(iii) Because  $\text{Mn}^{2+}$  has  $3d^5$  as a stable oxidation state which is half filled and stable. Mn has very high third ionization energy for change from  $d^5$  to  $d^4$  but in case of  $\text{Cr}^{3+}$ ,  $3d^3$  is more stable due to completely half filled  $t_{2g}^3$  orbitals (crystal field splitting theory) and that is why  $\text{Mn}^{3+}/\text{Mn}^{2+}$  is highly positive as compared to  $\text{Cr}^{3+}/\text{Cr}^{2+}$ .

(b) Both Lanthanoids and Actinoids have the  $t_3$  oxidation state and both show contraction or irregular electronic configuration while the major difference between the lanthanoids and actinoids is actinoids are radioactive while lanthanoids are not; radioactive in nature.

OR

- (i) In *p* block elements the difference in oxidation state is 2 and in transition elements the difference is 1.  
(ii)  $\text{Cu}^+$  is unstable in aq. solution because it undergoes disproportion reaction and has low hydration enthalpy.

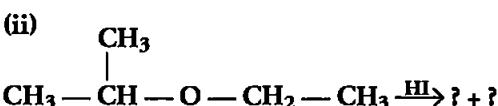
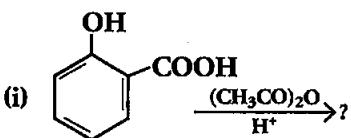
(iii) In alkaline medium dichromate ions  $\text{Cr}_2\text{O}_7^{2-}$  changes to chromate ion  $\text{CrO}_4^{2-}$ , which is yellow in colour due to which the colour changes when treated with an alkali.

(b) Chemistry of actinoids is complicated as compared to lanthanoids due to the following reasons :

1. They show multiple oxidation states namely +5, +6 and +7 oxidation states respectively which permits the formation of higher oxidation states through the removal of the periphery electrons.
2. They are radioactive and have a strong propensity to form complex reactions because of its unstable isotopes, some actinoids are formed naturally by radioactive decay.

25. (a) An element has atomic mass  $93\text{ g mol}^{-1}$  and density  $11.5\text{ g cm}^{-3}$ . If the edge length of its unit cell is  $300\text{ pm}$ , identify the type of unit cell.\*\*

(b) Write any two differences between amorphous solids and crystalline solids.\*\* [5]



OR

(a) Calculate the number of unit cells in  $8.1\text{ g}$  of aluminium if it crystallizes in a f.c.c. structure. (Atomic mass of Al =  $27\text{ g mol}^{-1}$ )

(b) Give reasons :\*\*

- (i) In stoichiometric defects, NaCl exhibits Schottky defect and not Frenkel defect.
- (ii) Silicon on doping with phosphorous forms *n*-type semiconductor.
- (iii) Ferrimagnetic substances show better magnetism than antiferromagnetic substances.

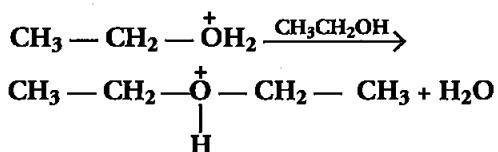
26. (a) Write the product(s) in the following reactions :



(b) Give simple chemical tests to distinguish between the following pairs of compounds :

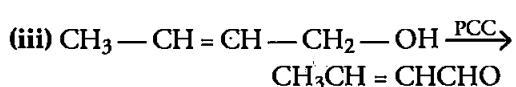
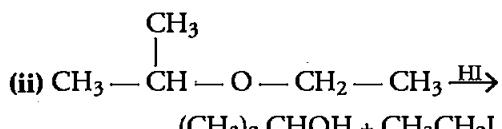
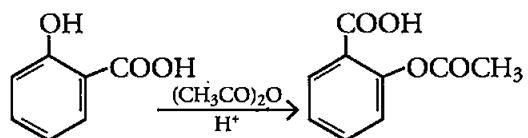
- (i) Ethanol and Phenol
- (ii) Propanol and 2-methylpropan-2-ol [5]

OR


(a) Write the formula of reagents used in the following reactions :

- (i) Bromination of phenol to 2, 4, 6-tribromophenol
- (ii) Hydroboration of propene and then oxidation to propanol.

(b) Arrange the following compound groups in the increasing order of their property indicated :




- (i) *p*-nitrophenol, ethanol, phenol (acidic character)
- (ii) Propanol, propane, Propanal (boiling point)

(c) Write the mechanism (using curved arrow notation) of the following reaction :

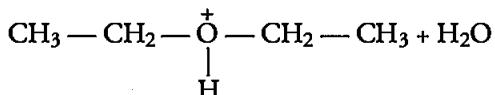


Answer :

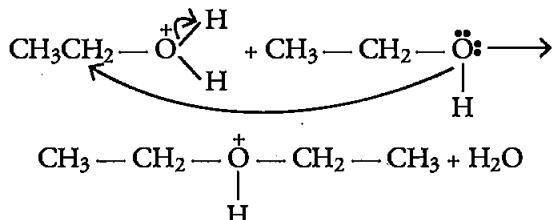
(a) (i)



(b) (i) Ethanol and phenol : When neutral ferric chloride is added to both the compounds phenol gives violet coloured complex whereas ethanol does not give this complex when treated with ferric chloride solution.


(ii) Propanol and 2-methyl propan-2-ol : When both the solutions were treated with anhydrous  $\text{ZnCl}_2$  and conc.  $\text{HCl}$  (Luca's test) the 2-methylpropan-2-ol gives the turbidity

\*\*Answer is not given due to the change in present Syllabus.


immediately whereas propanol does not give the turbidity immediately.

OR

(a) (i) Aq-Br<sub>2</sub>  
(ii) B<sub>2</sub>H<sub>6</sub> and then H<sub>2</sub>O<sub>2</sub> and OH<sup>-</sup>  
(b) (i) Ethanol < Phenol < *p*-Nitrophenol.  
(ii) Propane < Propanal < Propanol  
(c) CH<sub>3</sub>—CH<sub>2</sub>—OH<sub>2</sub><sup>+</sup>  $\xrightarrow{\text{CH}_3\text{CH}_2\text{OH}}$



Mechanism for this above reaction is :



••

## Chemistry 2017 (Delhi)

## SET II

Time allowed : 3 hours

Maximum marks : 70

Note : Except for the following questions, all the remaining questions have been asked in previous sets.

### SECTION-A

1. Write the structure of 2, 4-dinitrochlorobenzene. [1]

Answer :



4. Write IUPAC name of the following compound : CH<sub>3</sub>NHCH(CH<sub>3</sub>)<sub>2</sub> [1]

Answer : N-methylpropan-2-amine.

5. Write the formula of an oxo-anion of chromium (Cr) in which it shows the oxidation state equal to its group number. [1]

Answer : Chromium belongs to group number 6 and its oxidation state in K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> is +6 i.e.,



$$1 \times 2 + 2x + (-2 \times 7) = 0$$

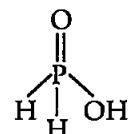
$$2 + 2x - 14 = 0$$

$$2x = 12 = 0$$

$$2x = 12$$

$$x = 6$$

Thus, the formula of the oxo-anion is K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>


### SECTION-B

7. Draw the structures of the following :



[2]

Answer :



8. Define the following terms :

(i) Ideal solution  
(ii) Molarity (M)

[2]

Answer : (i) Ideal solutions are those solutions that obeys Raoult's law over entire range of concentration. Example : Benzene and toluene, *n*-heptane and *n*-hexane.

(ii) Molarity is defined as the number of moles of solute dissolved per liter of solution.

$$M = \frac{W_b \times 1000}{M_b \times V}$$

9. Complete the following reactions : [2]

(i) Cl<sub>2</sub> + H<sub>2</sub>O →  
(ii) XeF<sub>6</sub> + 3H<sub>2</sub>O →

OR

What happens when

(i) conc. H<sub>2</sub>SO<sub>4</sub> is added to Cu ?



## 8. Define the following terms :

(ii) van't Hoff factor (i) [2]

**Answer :** (ii) van't Hoff factor (i) : It is defined as the extent of dissociation or association or the ratio of the observed colligative property to the calculated colligative property.

## 10. Complete the following chemical equations : [2]

(i)  $F_2 + 2Cl^- \rightarrow$ (ii)  $2XeF_2 + 2H_2O \rightarrow$ 

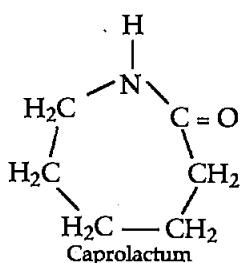
OR

What happens when

(i) HCl is added to  $MnO_2$  ?(ii)  $PCl_5$  is heated ?

write the equations involved.

Answer : (i)  $F_2 + 2Cl^- \rightarrow 2F^- + Cl_2$ (ii)  $2XeF_2 + 2H_2O \rightarrow 2Xe + 4HF + O_2$ 


OR

(i)  $MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + 2H_2O$ (ii)  $PCl_5 \xrightarrow{\Delta} PCl_3 + Cl_2$ 

## SECTION-C

## 14. Write the structures of the monomers used for getting the following polymers :

(i) Nylon-6 [3]

**Answer :** (i) Monomers of Nylon-6 :

## 19. Write one difference between each of the following :

(i) Multimolecular colloid and Macromolecular colloid

(ii) Sol and Gel

(iii) O/W emulsion and W/O emulsion [3]

**Answer :**

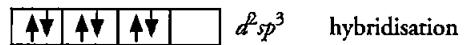
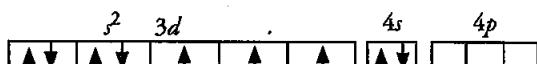
(i) In multimolecular colloids a large number of atoms or smaller molecules of a substance aggregates together to form species having size in the colloidal range. Example : Sulphur sol whereas in macro-molecular colloids the colloidal particles are large molecules having colloidal dimensions. Example : Starch.

(ii) In sol the dispersing phase is solid and dispersing medium is liquid; Example : paint, gold sol etc., whereas in Gel the dispersing phase is liquid and dispersing medium is solid; Example : Jelly, butter etc.

(iii) In O/W emulsion, oil is the dispersed phase while water is the dispersion medium. Example : milk, vanishing cream etc whereas in W/O emulsion water is the dispersed phase while oil is the dispersion medium. Example: Cold cream, butter etc.

20. (i) What type of isomerism is shown by the complex  $[Co(en)_3]Cl_3$  ?

(ii) Write the hybridisation and magnetic character of  $[Co(C_2O_4)_3]^{3-}$



(At. no. of Co = 27)

(iii) Write IUPAC name of the following Complex  $[Cr(NH_3)_3Cl_3]$ . [3]

**Answer :**

(i) Since the given coordinate compound does not have a plane of symmetry and the ligand attached is bidentate ligand so it will show optical isomerism.

(ii)  $[Co(C_2O_4)_3]^{3-}$  Co is in +3 oxidation state with electronic configuration of  $3d^6$  Oxalate is a strong field ligand so pairing of electrons take place.

CO:-  $3d^7 4s^2$ 

(iii) Triamminetrichloridochromium(III).



Students don't need to purchase any Guide, Question Bank or Sample/model paper from market. All material will be available on this website in the form of free PDFs by 30 September. On website [www.cbsepdf.com](http://www.cbsepdf.com) following materials will be provided :

1. NCERT Solutions
2. Previous Years Papers (2011-2019)
3. Previous Years Chapterwise Question Bank
4. 20 Solved Sample Paper

Students can download from following website

**[www.cbsepdf.com](http://www.cbsepdf.com)**

A mission for free content for all.

Students don't need to purchase any Guide, Question Bank or Sample/model paper from market. All material will be available on this website in the form of free PDFs by 30 September. On website [www.cbsepdf.com](http://www.cbsepdf.com) following materials will be provided :

1. NCERT Solutions
2. Previous Years Papers (2011-2019)
3. Previous Years Chapterwise Question Bank
4. 20 Solved Sample Paper

Students can download from following website

**[www.cbsepdf.com](http://www.cbsepdf.com)**

A mission for free content for all.

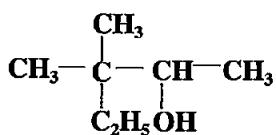
# Chemistry 2018

Time allowed : 3 hours

Maximum marks : 70

1. Analysis shows that  $\text{FeO}$  has a non-stoichiometric composition with formula  $\text{Fe}_{0.95}\text{O}$ . Give reason.\*\* [1]

2.  $\text{CO(g)}$  and  $\text{H}_2\text{(g)}$  react to give different products in the presence of different catalysts. Which ability of the catalyst is shown by these reactions ? [1]


**Answer :**  $\text{CO(g)}$  and  $\text{H}_2\text{(g)}$  react in presence of different catalysts to give different products, this shows that action of a catalyst is highly selective in nature.

3. Write the coordination number and oxidation state of Platinum in the complex  $[\text{Pt}(\text{en})_2\text{Cl}_2]$ . [1]  
**Answer :** Coordination number : 6; Oxidation state : +2

4. Out of chlorobenzene and benzyl chloride, which one gets easily hydrolysed by aqueous  $\text{NaOH}$  and why ? [1]

**Answer :** Benzyl chloride would be easily hydrolysed compared to chlorobenzene. In the given reaction condition, hydrolysis proceeds by nucleophilic substitution mechanism and the benzylic carbonium ion formed after losing the leaving group ( $-\text{Cl}$ ) is better stabilized (through resonating structures) hence reacts easily.

5. Write the IUPAC name of the following : [1]



**Answer :** The IUPAC name would be 3, 3-Dimethyl-pentan-2-ol.

6. Calculate the freezing point of a solution containing 60 g of glucose (Molar mass = 180 g  $\text{mol}^{-1}$ ) in 250 g of water.

( $K_f$  of water = 1.86 K  $\text{kg mol}^{-1}$ ) [2]

**Answer :** Molality ( $m$ ) of given solution of Glucose :

$$\begin{aligned}
 m &= [(60/180) \text{ g mol}^{-1} / 250 \text{ g}] \times 1000 \\
 &= 1.33 \text{ mol kg}^{-1}
 \end{aligned}$$

Now, depression in freezing point is given by,  
 $\Delta T_f = K_f m$

Putting the given values,

$$\begin{aligned}
 \Delta T_f &= K_f m \\
 &= 1.86 \times 1.33 \\
 &\approx 2.5
 \end{aligned}$$

So, freezing point of the solution would be  
 $273.15 \text{ K} - 2.5 \text{ K} = 270.65 \text{ K}$ .

7. For the reaction [2]



the rate of formation of  $\text{NO}_2\text{(g)}$  is  $2.8 \times 10^{-3} \text{ Ms}^{-1}$ . Calculate the rate of disappearance of  $\text{N}_2\text{O}_5\text{(g)}$ .

**Answer :** Rate of reaction for the given reaction can be given as,

$$\text{Rate} = 1/2 \{-\Delta[\text{N}_2\text{O}_5]/\Delta t\}$$

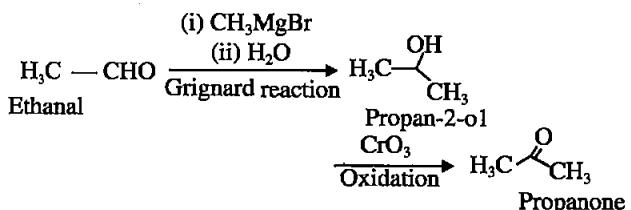
$$\text{or } \{-\Delta[\text{N}_2\text{O}_5]/\Delta t\} = 1/2 \{[\text{NO}_2]/\Delta t\}$$

So, rate of disappearance of  $\text{N}_2\text{O}_5$  would be half of rate of production of  $\text{NO}_2$  (given  $2.8 \times 10^{-3} \text{ Ms}^{-1}$ ). So, the rate of disappearance of  $\text{N}_2\text{O}_5$  is  $1.4 \times 10^{-3} \text{ Ms}^{-1}$ .

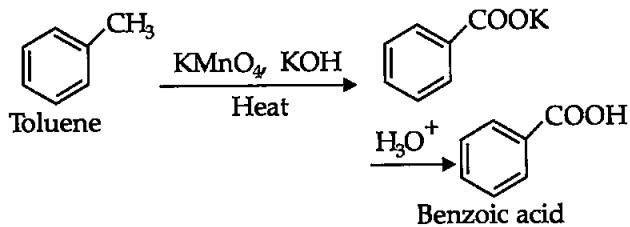
8. Among the hydrides of Group-15 elements, which have the\*\*

(a) lowest boiling point ? [2]  
(b) maximum basic character ?  
(c) highest bond angle ?  
(d) maximum reducing character ?

9. How do you convert the following ? [2]

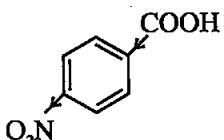

(a) Ethanal to Propanone  
(b) Toluene to Benzoic acid

OR

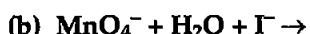

Account for the following :

(a) Aromatic carboxylic acids do not undergo Friedel- Crafts reaction.  
(b)  $\text{pK}_a$  value of 4-nitrobenzoic acid is lower than that of benzoic acid.

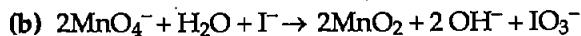
**Answer :** (a) Conversion of ethanal to Propanone :




\*\* Answer is not given due to change in present syllabus.


**(b) Conversion of toluene to benzoic acid :****OR**

(a) Aromatic carboxylic acids do not undergo Friedel-Crafts reaction because the carboxyl group is deactivating for electrophilic substitution reaction, secondarily, the catalyst aluminium chloride gets bonded to the carboxyl group.



(b)  $pK_a$  value of 4-Nitrobenzoic acid is lower than benzoic acid, which means 4-Nitrobenzoic acid is more acidic than the benzoic acid. Being an electron withdrawing group, the  $-NO_2$  group withdraws electrons towards itself resulting in ease of carboxylic proton release, hence increasing the acidity.



10. Complete and balance the following chemical equations :



[2]

**Answer :**

11. Give reasons for the following : [3]

(a) Measurement of osmotic pressure method is preferred for the determination of molar masses of macromolecules such as proteins and polymers.

(b) Aquatic animals are more comfortable in cold water than in warm water.

(c) Elevation of boiling point of 1 M KCl solution is nearly double than that of 1 M sugar solution.

**Answer :**

(a) Molar masses of macromolecules like polymers and proteins are measured

through osmotic pressure method. The osmotic pressure method uses 'molarity' of solution (instead of molality) which has a large magnitude even for dilute solutions, given that polymers have poor solubility, osmotic pressure measurement is used for determination of their molar masses. Macromolecules such as proteins are not stable at high temperatures and because measurement of osmotic pressure is done at around room temperature, it is useful for determination of molar masses of proteins.

(b) Solubility of gases in liquid decreases on increasing the temperature. Hence, the availability of dissolved oxygen in water is more at lower temperatures hence, the aquatic animals feel more comfortable at lower temperatures than at the higher temperatures.

(c) Elevation of boiling point is a colligative property and hence depends on the number of solute particles in the solution. Now, 1 M KCl would have twice the number of solute particles, as KCl dissociates into  $K^+$  and  $Cl^-$ , compared to sugar solution (as sugar does not undergo any dissociation). So, elevation of boiling point is nearly double for 1 M KCl solution compared to 1 M sugar solution.

12. An element 'X' (At. mass =  $40 \text{ g mol}^{-1}$ ) having f.c.c. structure, has unit cell edge length of 400 pm. Calculate the density of 'X' and the number of unit cells in 4 g of 'X'. ( $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ )\*\* [3]

13. A first order reaction is 50% completed in 40 minutes at 300 K and in 20 minutes at 320 K. Calculate the activation energy of the reaction. (Given :  $\log 2 = 0.3010$ ,  $\log 4 = 0.6021$ ,  $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$ ) [3]

**Answer :** Rate constant for a first order reaction is given by,

$$k = \frac{2.303}{t} \log \left[ \frac{R_0}{R_1} \right]$$

So, at 300 K,

$$\begin{aligned} k_{300} &= \frac{2.303}{40} \log \left( \frac{100}{50} \right) \\ &= 0.058 \times \log 2 \\ &= 0.058 \times 0.301 \\ &= 0.017 \end{aligned}$$

$$k_{320} = \frac{2.303}{20} \log \left( \frac{100}{50} \right)$$

\*\* Answer is not given due to change in present syllabus.

$$= 0.11 \times \log 2$$

$$= 0.11 \times 0.3010 = 0.034$$

Now,  $\log \frac{k_{320}}{k_{300}} = \left( \frac{E_a}{2.303R} \right) \left[ \frac{T_2 - T_1}{T_1 T_2} \right]$

Putting the values,

$$\log \frac{0.034}{0.017} = \left( \frac{E_a}{2.303 \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1}} \right)$$

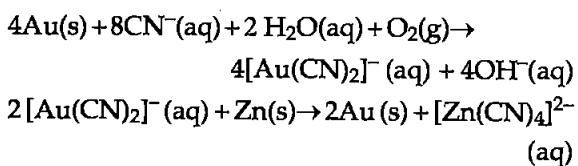
$$\left[ \frac{320 - 300}{320 \times 200} \right] \text{ K}$$

$$0.3010 = \frac{E_a}{19.14(0.0002)}$$

$$E_a = 28,805.7 \text{ J mol}^{-1} = 28.80 \text{ kJ mol}^{-1}$$

14. What happens when [3]

- a freshly prepared precipitate of  $\text{Fe(OH)}_3$  is shaken with a small amount of  $\text{FeCl}_3$  solution ?
- persistent dialysis of a colloidal solution is carried out ?
- an emulsion is centrifuged ?


Answer :

- When  $\text{FeCl}_3$  is added to a freshly prepared precipitate of  $\text{Fe(OH)}_3$ , a positively charged sol of hydrated ferric oxide is formed due to adsorption of  $\text{Fe}^{3+}$  ions.
- When persistent dialysis of colloidal solution is carried out, traces of electrolytes present in the sol are removed almost completely leaving the colloids unstable and finally coagulation takes place.
- Emulsions are centrifuged to separate them into constituent liquids.

15. Write the chemical reactions involved in the process of extraction of Gold. Explain the role of dilute  $\text{NaCN}$  and  $\text{Zn}$  in this process. [3]

Answer : Extraction of gold involves leaching the metal with dilute solution of  $\text{NaCN}$  or  $\text{KCN}$  in the presence of air (for  $\text{O}_2$ ) from which the metal is obtained later by replacement method (using Zinc).

The reactions involved are :



16. Give reasons :

- $E^\circ$  value for  $\text{Mn}^{3+}/\text{Mn}^{2+}$  couple is much more positive than that for  $\text{Fe}^{3+}/\text{Fe}^{2+}$ .
- Iron has higher enthalpy of atomization than that of copper .
- $\text{Sc}^{3+}$  is colourless in aqueous solution whereas  $\text{Ti}^{3+}$  is coloured. [3]

Answer :

- $\text{Mn}^{2+}$  has a  $d^5$  configuration, and the extra stability of half filled  $d$ -orbitals is compromised when another electron is taken out to give  $\text{Mn}^{3+}$ , On the contrary  $\text{Fe}^{3+}$  attains a half filled orbital configuration when  $\text{Fe}^{2+}$  gets oxidized to  $\text{Fe}^{3+}$ . Hence, the  $E^\circ$  value for  $\text{Mn}^{3+}/\text{Mn}^{2+}$  couple has more positive  $E^\circ$  value.
- $\text{Fe}$  has a  $3d^64s^2$  outer electronic configuration whereas  $\text{Cu}$  has  $3d^{10}4s^1$  configuration. Now, more the number of unpaired electrons in  $d$ -orbital, more favourable are interatomic attractions and thus higher atomization enthalpies. Hence,  $\text{Fe}$  having 4 unpaired  $d$ -electrons has more enthalpy of atomization than copper having no unpaired  $d$ -electron.
- $\text{Sc}^{3+}$  has a  $3d^0$  configuration whereas  $\text{Ti}^{3+}$  has a  $3d^1$  configuration. As there are no electrons in  $d$  orbital for  $\text{Sc}^{3+}$  ion, there is no transition of electrons by absorption of energy and hence no emission in visible range imparting colour to the  $\text{Sc}^{3+}$  ion.

17. (a) Identify the chiral molecule in the following pair : [3]



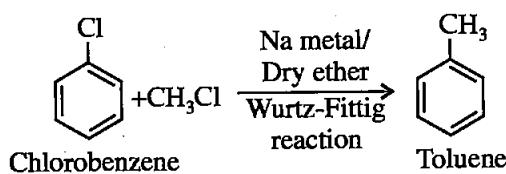
and



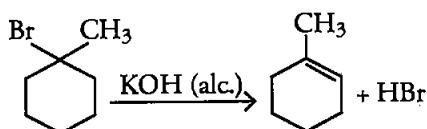
(i)

(ii)

(b) Write the structure of the product when chlorobenzene is treated with methyl chloride in the presence of sodium metal and dry ether.


(c) Write the structure of the alkene formed by dehydrohalogenation of 1-bromo-1-methylcyclohexane with alcoholic KOH.

**Answer:**


(a) The molecule (i) is a chiral molecule.



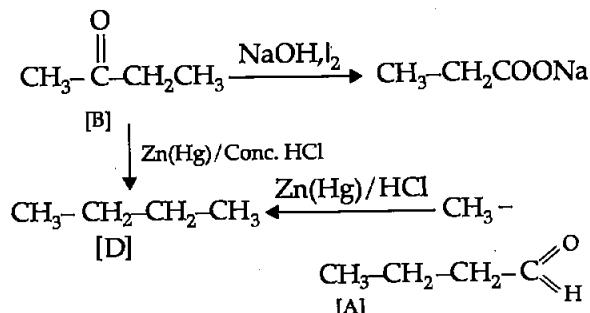
(b) Chlorobenzene reacts with methyl chloride in presence of sodium metal and dry ether to give toluene. This reaction is known as Wurtz-Fittig reaction.



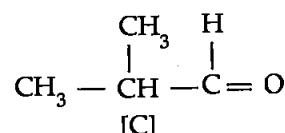
(c) In the 1-bromo-1-methylcyclohexane, all  $\beta$ -hydrogen atoms are equivalent. Thus dehydrohalogenation takes place, in the reaction of this compound with KOH.



18. (A), (B) and (C) are three non-cyclic functional isomers of a carbonyl compound with molecular formula  $C_4H_8O$ . Isomers (A) and (C) give positive Tollen's test whereas isomer (B) does not give Tollen's test but gives positive Iodoform test. Isomers (A) and (B) on reduction with  $Zn(Hg)/conc. HCl$  give the same product (D).

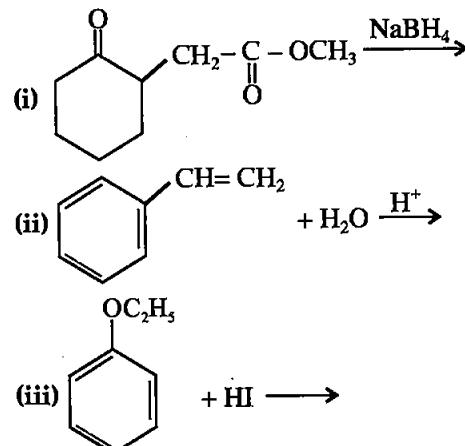

(a) Write the structures of (A), (B), (C) and (D).

(b) Out of (A), (B) and (C) isomers, which one is least reactive towards addition of HCN ? [3]


**Answer:**

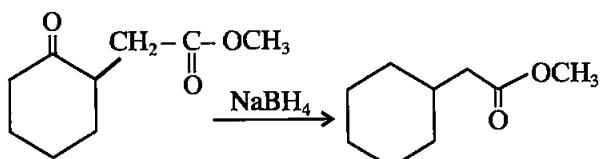
(a) Compound A and C give positive Tollen's test which indicates that they are aldehydes. Compound C gives Iodoform test which means it contains a carbonyl group with a methyl group attached to the carbonyl carbon so, with formula  $C_4H_8O$  the structure of compound would be  $CH_3COCH_2CH_3$  (Butanone). Now upon reduction with  $Zn(Hg)/conc. HCl$ , the corresponding alkanes are obtained, so reduction of B gives Butane (D), so the isomer

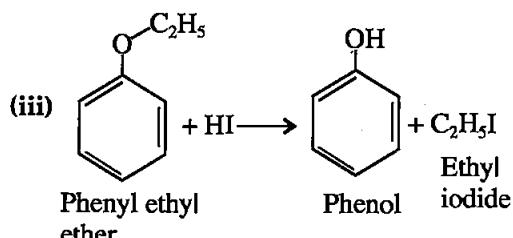
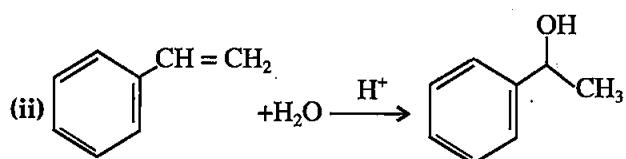
A have to be a linear chain aldehyde (Butanal), giving Butane (compound D) on reduction. So, the last isomer possible is compound C, 2-Methyl propanaldehyde. The reactions involved are shown below with the structures of compounds :




isomer of [A] is compound [C] whose structure is




(b) Out of the three isomers A, B and C, compound B (Butanone) would be least reactive towards addition of HCl as the carbonyl carbon is sterically hindered and most reactive would be compound A (Butanal) towards addition of HCN.



19. Write the structures of the main products in the following reactions : [3]



**Answer:**

(i) Sodium borohydride doesn't reduce esters, so product would be,





20. (a) Why is bithional added to soap ? [3]  
(b) What is tincture of iodine ? Write its one use.  
(c) Among the following, which one acts as a food preservative ?  
Aspartame, Aspirin, Sodium Benzoate, Paracetamol

**Answer:**

- (a) Bithional is added to soaps to impart antiseptic properties to soap.
- (b) Tincture of iodine is 2-3 percent mixture of iodine in alcohol water mixture. It is used as an antiseptic.
- (c) Sodium benzoate is used as a food preservative.

21. Define the following with an example of each : [3]

- (a) Polysaccharides
- (b) Denatured protein
- (c) Essential amino acids

OR

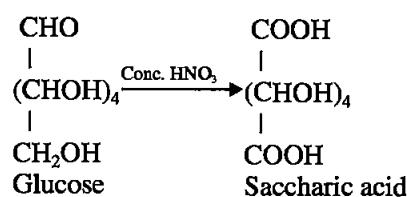
(a) Write the product when D-glucose reacts with conc.  $\text{HNO}_3$ .

(b) Amino acids show amphoteric behaviour. Why ?

(c) Write one difference between  $\alpha$ -helix and  $\beta$ -pleated structures of proteins.

**Answer:**

(a) **Polysaccharides** : Polysaccharides are food storage materials and most commonly


found carbohydrates in nature. These are the compound which are formed of large number of monosaccharide units joined together by glycosidic linkages. Example. Starch, main storage polysaccharide of plants.

(b) **Denatured protein** : Proteins have an unique three dimensional structure in their native form. If the native form of protein is subjected to any physical change (such as temperature change) or any chemical change (such as change in pH), the hydrogen bonds are disturbed. Due to this, globules unfold and helix get uncoiled due to which protein loses its biological activity. This is called denaturation of protein. During denaturation  $2^\circ$  and  $3^\circ$  structures of proteins are destroyed but  $1^\circ$  structure remains intact. Coagulation of egg white is an example of denaturation of protein.

(c) **Essential amino acids** : The amino acids which are not synthesized in our body and have to be obtained through diet are known as essential amino acids. Example : Tryptophan

OR

(a) D-Glucose gets oxidized to give saccharic acid, a dicarboxylic acid on reacting with nitric acid.

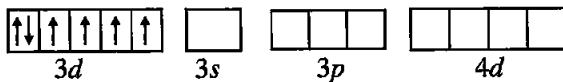


- (b) Amino acids show amphoteric behaviour due to the presence of both acidic (carboxylic group) and basic (amino group) in the same molecule. So, in basic medium the carboxyl group can lose a proton and in acidic medium amino group can accept a proton.
- (c) In  $\alpha$ -helix structure the polypeptide chain forms all possible hydrogen bonds by twisting into a right handed screw (helix) with the  $-\text{NH}$  group of each amino acid residue gets hydrogen bonded to the  $-\text{C} = \text{O}$  of an adjacent turn of the helix (intra. molecular bonding), whereas in

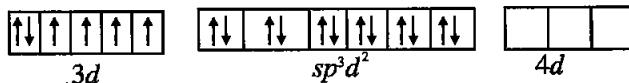
$\beta$  -structure all peptide chains are stretched out to nearly maximum extension and then laid side by side which are held together by intermolecular hydrogen bonds (intermolecular bonding).

22. (a) Write the formula of the following coordination compound :  
Iron (III) hexacyanoferrate (II)

(b) What type of isomerism is exhibited by the complex  $[\text{Co}(\text{NH}_3)_5 \text{Cl}]\text{SO}_4$  ?


(c) Write the hybridisation and number of unpaired electrons in the complex  $[\text{CoF}_6]^{3-}$ . (Atomic number of Co = 27) [3]

Answer :


(a) Molecular formula of Iron(III)  $\alpha$ -cyanoferrate(II) is  $\text{Fe}_4[\text{Fe}(\text{CN})_6]_3$

(b)  $[\text{Co}(\text{NH}_3)_5 \text{Cl}]\text{SO}_4$  will show Ionisation isomerism and the possible isomers are  $[\text{Co}(\text{NH}_3)_5 \text{Cl}]\text{SO}_4$  and  $[\text{Co}(\text{NH}_3)_5 \text{SO}_4]\text{Cl}$

(c) Electronic configuration of  $\text{Co}^{3+}$  ion is,



Electronic configuration of  $sp^3d^2$  hybridized (as F<sup>-</sup> is a weak field ligand) orbitals of  $\text{Co}^{3+}$ , with six pairs of electrons from six F ions.



There are 4 unpaired electrons in  $[\text{CoF}_6]^{3-}$ .

23. Shyam went to a grocery shop to purchase some food items. The shopkeeper packed all the items in polythene bags and gave them to Shyam. But Shyam refused to accept the polythene bags and asked the shopkeeper to pack the items in paper bags. He informed the shopkeeper about the heavy penalty imposed by the government for using polythene bags. The shopkeeper promised that he would use paper bags in future in place of polythene bags. [4]

Answer the following :

(a) Write the values (at least two) shown by Shyam\*\*.

(b) Write one structural difference between low-density polythene and high-density polythene.

(c) Why did Shyam refuse to accept the items in polythene bags ?

\*\*Answer is not given due to the change in present syllabus.

(d) What is a biodegradable polymer ? Give an example.

Answer :

(b) Low density polythene has branched chain structure, whereas the high density polythene has linear chain structure.

(c) Shyam refused to take the items in polythene bags as polythene is non-biodegradable neither recyclable,

(d) Biodegradable polymers contain functional groups similar to functional groups present in biopolymers, so they get degraded in environment by certain microorganisms and thus are environment friendly. For example : Poly  $\beta$ -hydroxybutyrate-co- $\beta$ -hydroxyvalerate (PHBV).

24. (a) Give reasons : [5]

(i)  $\text{H}_3\text{PO}_3$  undergoes disproportionation reaction but  $\text{H}_3\text{PO}_4$  does not.

(ii) When  $\text{Cl}_2$  reacts with excess of  $\text{F}_2$ ,  $\text{ClF}_3$  is formed and not  $\text{FCl}_3$ .

(iii) Dioxygen is a gas while Sulphur is a solid at room temperature.

(b) Draw the structures of the following :

(i)  $\text{XeF}_4$

(ii)  $\text{HClO}_3$

OR

(a) When concentrated sulphuric acid was added to an unknown salt present in a test tube a brown gas (A) was evolved. This gas intensified when copper turnings were added to this test tube. On cooling, the gas (A) changed into a colourless solid (B).

(i) Identify (A) and (B).

(ii) Write the structures of (A) and (B).

(iii) Why does gas (A) change to solid on cooling ?

(b) Arrange the following in the decreasing order of their reducing character :

$\text{HF}, \text{HCl}, \text{HBr}, \text{HI}$

(c) Complete the following reaction :

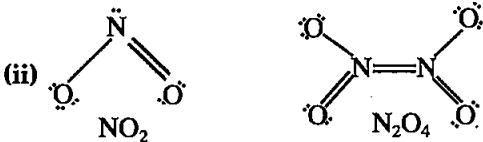
$\text{XeF}_4 + \text{SbF}_5 \rightarrow$

Answer :

(a) (i) In  $\text{H}_3\text{PO}_3$  (orthophosphorus acid) oxidation state of phosphorus is +3 and it contains one P-H bond in addition to P=O and P-OH bonds. These type of oxoacids tend to undergo disproportionation to give orthophosphoric acid (P has +5 state) and phosphine (P has +3 state). Whereas in  $\text{H}_3\text{PO}_4$  (orthophosphoric

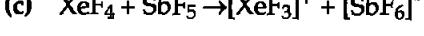
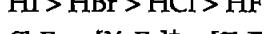
acid), Phosphorus is in +5 state hence no disproportionation takes place in  $H_3PO_4$ .

(ii) When  $Cl_2$  reacts with excess of  $F_2$ ,  $ClF_3$  is formed and not  $ClF_3$  because Fluorine can't expand its valency and can show only -1 oxidation state, whereas Cl can expand its valency due to the availability of  $d$ -orbitals.

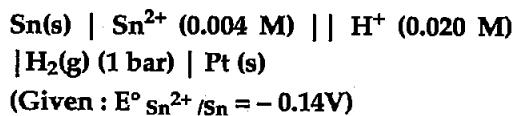

(iii) Dioxygen is a gas while sulphur is a solid at room temperature this is because sulphur have  $S_8$  molecules and these are packed to give different crystal structure, whereas dioxygen is a diatomic molecule ( $O_2$ ) and it does not have enough intermolecular attraction and thus exists in gaseous form.

(b)

|                                           |                               |
|-------------------------------------------|-------------------------------|
| (i) $XeF_4$ is square planar in structure | (ii) $HClO_3$ or chloric acid |
|                                           |                               |



OR

(a) (i) The brown gas A is  $NO_2$  or nitrogen dioxide. On cooling it dimerises to  $N_2O_4$  and solidifies as a colourless solid.

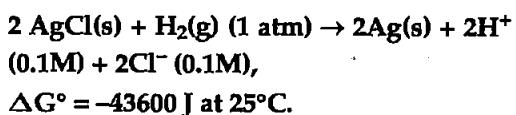



(iii) Compound A, that is,  $NO_2$  contains odd number of valence electrons. It behaves as a typical odd molecule. On dimerization, it is converted to stable  $N_2O_4$  molecule with even number of electrons (thus colourless) and have better intermolecular forces to get solidified. Thus, it changes to solid on cooling.

(b) Decreasing order of reducing character-



25. (a) Write the cell reaction and calculate the e.m.f. of the following cell at 298 K: [5]




(b) Give reasons :

- On the basis of  $E^\circ$  values,  $O_2$  gas should be liberated at anode but it is  $Cl_2$  gas which is liberated in the electrolysis of aqueous  $NaCl$ .
- Conductivity of  $CH_3COOH$  decreases on dilution.

OR

(a) For the reaction



Calculate the e.m.f. of the cell.

$$[\log 10^{-n} = -n]$$

(b) Define fuel cell and write its two advantages.

Answer :

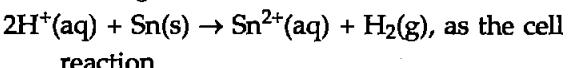
(a) The half cell reactions can be written as;

$$Sn^{2+} + 2e^- \rightarrow Sn$$

$$E_{cell} = -0.14 + \frac{0.0591}{2} (\log [Sn^{2+}])$$

$$= -0.11 \times (\log 0.004) \text{ V}$$

$$= 0.26 \text{ V} \quad \dots\dots (i)$$

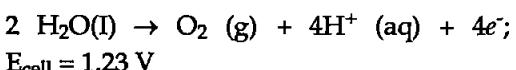
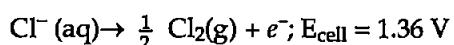

$$2H^+ + 2e^- \rightarrow H_2$$

$$E_{cell} = 0.0 + 0.0591 (\log [H^+])$$

$$= 0.0591 \times (-1.7)$$

$$= -0.10 \text{ V} \quad \dots\dots (ii)$$

Considering,


So,  $E_{cell}$  will be,

$$E_{cell} = 0.26 \text{ V} - (-0.10) \text{ V}$$

$$= 0.36 \text{ V}$$

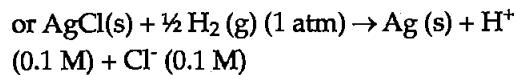
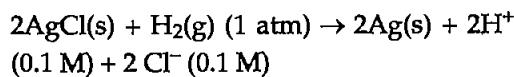
(b) (i) During the electrolysis of aqueous  $NaCl$ , there are two possible reactions at anode,



The reaction at anode with lower value of  $E_{cell}$  is preferred and therefore, water

should get oxidized to give  $O_2$  but on account of over potential of oxygen,  $Cl^-$  gets oxidized preferably, liberating  $Cl_2$  gas.

(ii) Conductivity of  $CH_3COOH$  decreases on dilution because the number of ions per unit volume that carry the current in a solution decreases on dilution.



OR

(a)  $E^\circ_{cell}$  can be obtained from the formula,  

$$\Delta G^\circ = -nE^\circ_{cell}$$

$$\begin{aligned} E^\circ_{cell} &= \frac{\Delta G^\circ}{nF} \\ &= \frac{-43600 \text{ J}}{1 \times 96487 \text{ C mol}^{-1}} \\ &= -0.45 \text{ V} \end{aligned}$$

Now, let us consider the given reaction equation,



According to Nernst equation :

$$E_{cell} = E^\circ_{cell} - \frac{2.303 RT}{nF} \log \frac{[\text{product}]}{[\text{reactant}]}$$

$$E_{cell} = E^\circ_{cell} - \frac{2.303 RT}{nF} \log \frac{[H^+][Cl^-][Ag]}{[AgCl][H_2]^{1/2}}$$

As the activity of solid and  $H_2$  gas at 1 atm is taken unity, the equation becomes,

$$E_{cell} = E^\circ_{cell} - \frac{2.303 RT}{nF} \log ([H^+][Cl^-]) \quad \dots \dots \text{(i)}$$

Now, putting the values in equation (i) above,

$$\begin{aligned} E_{cell} &= -0.45 - (0.059) \log (0.1 \times 0.1) \\ &= -0.51 \log (10^{-2}) \\ &= -0.51 \times (-2) \\ &= 1.02 \text{ V} \end{aligned}$$

So, EMF of the given cell is 1.02 V

(b) Galvanic cells that are designed to convert the energy of combustion of fuels like hydrogen, methane, methanol etc. directly

into electrical energy are called fuel cells.

Advantages of fuel cells are :

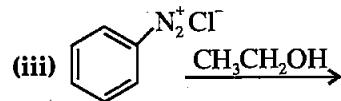
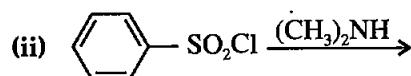
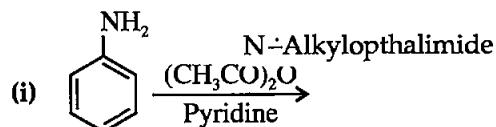
1. Fuel cells produce electricity with an efficiency of about 70% compared to thermal plants whose efficiency is about 40%.
2. Fuel cells are pollution free.

26. (a) Write the reactions involved in the following : [5]

(i) Hofmann bromamide degradation reaction

(ii) Diazotisation

(iii) Gabriel phthalimide synthesis




(b) Give reasons :

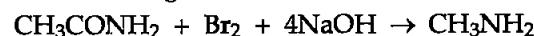
(i)  $(CH_3)_2NH$  is more basic than  $(CH_3)_3N$  in an aqueous solution.

(ii) Aromatic diazonium salts are more stable than aliphatic diazonium salts.

OR

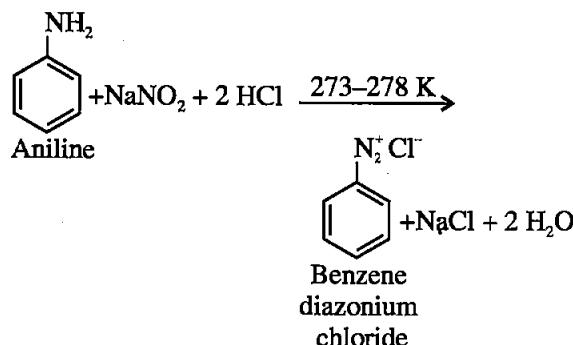
(a) Write the structures of the main products of the following reactions :



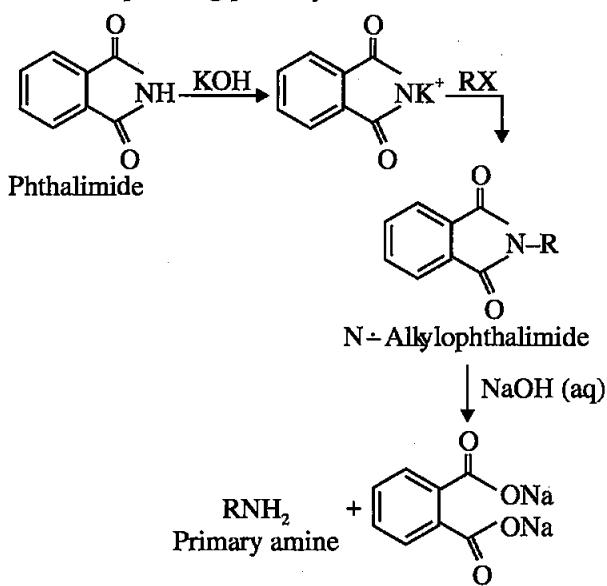

(b) Give a simple chemical test to distinguish between Aniline and N, N-dimethylaniline.

(c) Arrange the following in the increasing order of their  $pK_b$  values :



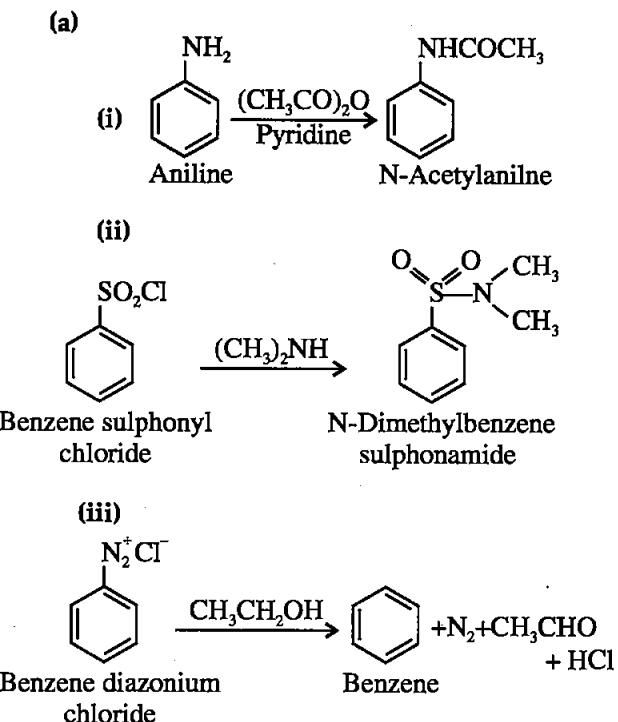

Answer :

(a) (i) Hofmann bromamide degradation reaction : Acetamide can be considered for example. In this reaction, Acetamide ( $CH_3CONH_2$ ) undergoes Hofmann degradation in presence of Bromine and  $NaOH$  to give Methanamine.

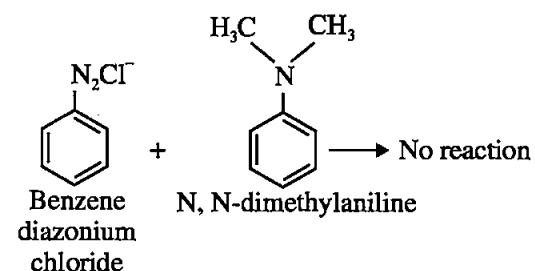
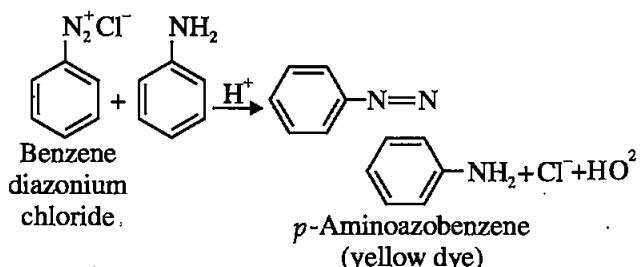





**(ii) Diazotisation :** The conversion of primary aromatic amines into diazonium salts is known as diazotisation.




**(iii) Gabriel phthalimide synthesis :** This reaction is used for the preparation of primary amines. Phthalimide on treatment with ethanolic potassium hydroxide forms potassium salt of phthalimide which on heating with alkyl halide followed by alkaline hydrolysis produces the corresponding primary amine.


**(b)** (i)  $(\text{CH}_3)_2\text{NH}$  is more basic than  $(\text{CH}_3)_3\text{N}$  in aqueous solutions because, in  $(\text{CH}_3)_3\text{N}$  the lone pair of electrons on nitrogen atom is responsible for its basicity are quite hindered by the three methyl groups, hence are less available. Due to which it is less basic as compared to  $(\text{CH}_3)_2\text{NH}$ .  
(ii) Aromatic diazonium salts are more stable than aliphatic diazonium salts because the positive charge on nitrogen atom is stabilized by the resonance with attached phenyl group.

**OR**

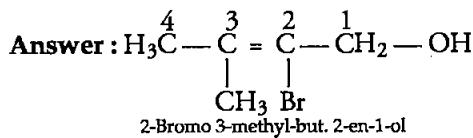
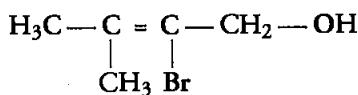


**(b)** Aniline can be distinguished from N, N-dimethyl aniline by diazo coupling reaction. Aniline would react with benzene diazonium chloride to give a yellow dye, whereas N, N-dimethyl aniline won't undergo this reaction.



**(c)** Increasing order of  $pK_b$  values is





**Chemistry 2017 (Outside Delhi)****SET I**

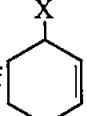
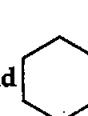
Time allowed : 3 hours

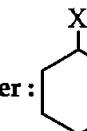
Maximum marks : 70

1. Write the formula of the compound of phosphorus which is obtained when conc.  $\text{HNO}_3$  oxidises  $\text{P}_4$ \*\* [1]

2. Write the IUPAC name of the following compound : [1]





3. What is the effect of adding a catalyst on [1]


(a) Activation energy ( $E_a$ ), and  
(b) Gibbs energy ( $\Delta G$ ) of a reaction ?

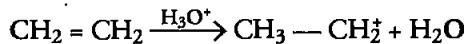
Answer : On adding a catalyst

(a) Activation energy of the reaction decreases.

(b) Gibbs energy doesn't change.

4. Out of  and , which is an example of allylic halide ? [1]

Answer :  is an example of allylic halide


5. What type of colloid is formed when a liquid is dispersed in a solid ? Give an example. [1]

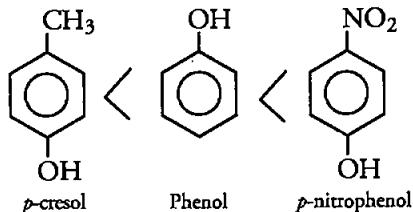
Answer : When a liquid is dispersed in solid, 'gel' colloid is formed. Examples Jelly, butter, cheese, curd etc.

6. (a) Arrange the following compounds in the increasing order of their acid strength : [2]

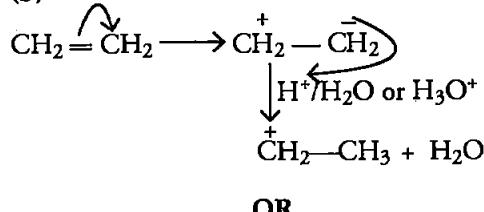
$p$ -cresol,  $p$ -nitrophenol, phenol

(b) Write the mechanism (using curved arrow notation) of the following reaction :

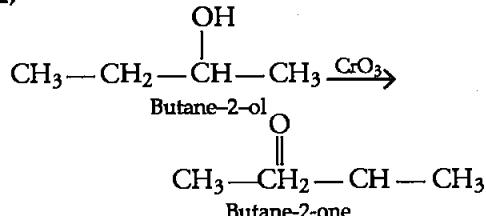



OR

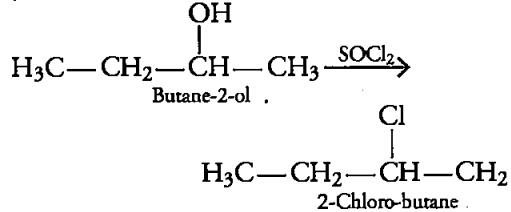
Write the structures of the products when Butan-2-ol reacts with the following :


(a)  $\text{CrO}_3$   
(b)  $\text{SOCl}_2$

Answer :


(a)



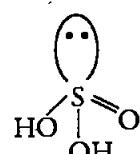

(b)



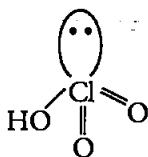
(a)



(b)

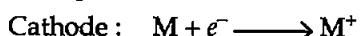



7. Calculate the number of unit cells in 8.1g of aluminium if it crystallises in a face-centred cubic (f.c.c.) structure. (Atomic mass of Al= 27 g mol<sup>-1</sup>)\*\* [2]


8. Draw the structures of the following :

(a)  $\text{H}_2\text{SO}_3$   
(b)  $\text{HClO}_3$

Answer : (a)




\*\*Answer is not given due to the change in present syllabus.



9. Write the name of the cell which is generally used in hearing aids. Write the reactions taking place at the anode and the cathode of this cell. [2]

**Answer :** Electrolytic cells are generally used in hearing aids. At cathode, reduction of metal takes place and at anode, oxidation of metal takes place.



10. Using IUPAC norms write the formulae for the following :

(a) Sodium dicyanidoaurate (I)  
 (b) Tetraamminechloridonitrito-N-platinum (IV) sulphate [Pt(NH<sub>3</sub>)<sub>4</sub>(Cl)(NO<sub>2</sub>)<sub>2</sub>]SO<sub>4</sub> [2]

**Answer :** (a) Sodium dicyanoaurate (I)



(b) Tetraammine chloridonitrito-N-platinum (IV) Sulphate [Pt(NH<sub>3</sub>)<sub>4</sub>(Cl)(NO<sub>2</sub>)<sub>2</sub>]SO<sub>4</sub>

11. (a) Based on the nature of intermolecular forces, classify the following solids :\*\*

Silicon carbide, Argon

(b) ZnO turns yellow on heating. Why ?\*\*  
 (c) What is meant by groups 12-16 compounds ? Give an example.\*\* [3]

12. (a) The cell in which the following reaction occurs :



has  $E_{\text{cell}}^{\circ} = 0.236 \text{ V}$  at 298 K. Calculate the standard Gibbs energy of the cell reaction. (Given : 1F = 96,500 C mol<sup>-1</sup>)

(b) How many electrons flow through a metallic wire if a current of 0.5 A is passed for 2 hours ? (Given : 1 F = 96,500 C mol<sup>-1</sup>) [3]

**Answer :** (a)  $\Delta G^{\circ} = -nF E^{\circ}_{\text{cell}}$   
 $= -2 \times 96500 \times 0.236$   
 $\approx -45.548 \text{ kJ/mol}$

(b) According to Faraday's first law the amount of metal deposited (W).

$$W = i \times t$$

$$= 0.5 \times 7200$$

$$= 3600 \text{ C}$$

$$\therefore 1 \text{ F} = 96500 \text{ C mol}^{-1}$$

That is  $e^-$  flows from 96500 C = 1 mol

$$\therefore e^- \text{ flows from } 3600 \text{ C} = \frac{1 \times 3600}{96500 \text{ mol}}$$

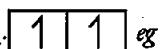
$$= 0.037 \text{ mol.}$$

$$\text{No. of electrons} = 0.037 \times 6.023 \times 10^{23}$$

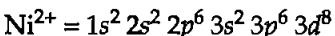
$$= 0.2246 \times 10^{23}$$

$$= 22.46 \times 10^{21} \text{ electrons}$$

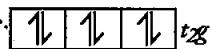
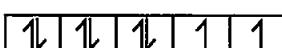
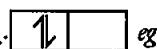
13. (a) What type of isomerism is shown by the complex  $[\text{Co}(\text{NH}_3)_5(\text{SCN})]^{2+}$  ?


(b) Why is  $[\text{NiCl}_4]^{2-}$  paramagnetic while  $[\text{Ni}(\text{CN})_4]^{2-}$  is diamagnetic ? (Atomic number of Ni = 28)

(c) Why are low spin tetrahedral complexes rarely observed ? [3]


**Answer :** (a) Linkage isomerism

(b)  $[\text{NiCl}_4]^{2-}$ ,  $\text{Ni}^{2+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^8$




$\text{Cl}^-$  is a weak field ligand.



2 electrons are unpaired in  $[\text{NiCl}_4]^{2-}$  which provides paramagnetism to the complex.  $[\text{Ni}(\text{CN})_4]^{2-}$



$\text{CN}^-$  is a strong field ligand



no electron is unpaired in  $[\text{Ni}(\text{CN})_4]^{2-}$  That's why the complex is diamagnetic.

\*\*Answer is not given due to the change in present syllabus.

(c) In tetrahedral complex, CFSE is very low and it is difficult for the tetrahedral complexes to exceed the pairing energy. Usually electrons prefer to move to higher energy orbitals for pairing. Thus they usually forms high spin complexes.

$$(\text{CFSE})_{\text{tetrahedral}} = \frac{4}{9} (\text{CFSE})_{\text{octahedral}}$$

14. Write one difference in each of the following :

- Multimolecular colloid and Associated colloid
- Coagulation and Peptization
- Homogeneous catalysis and Heterogeneous catalysis

[3]

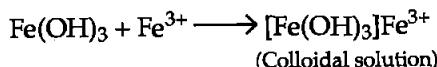
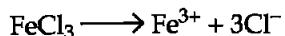
OR

- Write the dispersed phase and dispersion medium of milk.
- Write one similarity between physisorption and chemisorption.
- Write the chemical method by which  $\text{Fe(OH)}_3$  sol is prepared from  $\text{FeCl}_3$ .

Answer :

- Multimolecular colloids are the colloids in which the dispersed phase consists of aggregates of atoms or molecules with molecular size less than 1nm whereas associated colloids are the substances that are dissolved in a medium, behave as normal electrolytes at low concentration but as colloids at higher concentration.
- Coagulation is the process of precipitation of a colloidal solution by the addition of excess of an electrolyte whereas peptization is the process responsible for the formation of stable dispersion of colloidal particles in dispersion medium.
- Homogeneous catalysis is the one in which the phases of the reactants and the catalysts are the same whereas in heterogeneous catalysis the phases of the reactants and the catalysts are not the same.

OR



- Milk

Dispersed phase — Liquid

Dispersion medium— Liquid

- Both physisorption and chemisorption depends on the surface area. Both increases with an increase in the surface area.

(c)  $\text{Fe(OH)}_3$  sol is prepared from  $\text{FeCl}_3$  by hydrolysis method.



15. A first order reaction takes 20 minutes for 25% decomposition. Calculate the time when 75% of the reaction will be completed.

Given :  $\log 2 = 0.3010$ ,  $\log 3 = 0.4771$ ,  $\log 4 = 0.6021$  [3]

Answer : For first order reaction.

$$K = \frac{2.303}{t} \log \frac{a}{a-x}$$

$a \rightarrow$  initial amount

$a-x \rightarrow$  amount left after time

for 25% decomposition :

$$K = \frac{2.303}{20} \log \frac{100}{75} \quad \dots\dots(1)$$

for 75% decomposition :

$$K = \frac{2.303}{t} \log \frac{100}{25} \quad \dots\dots(2)$$

$K$  is constant throughout the process eq. (1) = eq. (2)

Thus on comparing eq. (1) and eq. (2) we have

$$\frac{2.303}{20} \log \frac{100}{75} = \frac{2.303}{t} \log \frac{100}{25}$$

$$\frac{1}{20} (\log 100 - \log 75) = \frac{1}{t} (\log 100 - \log 25)$$

$$\frac{1}{2} [2 - 1.875] = \frac{1}{t} [2 - 1.398]$$

$$\frac{0.125}{2} = \frac{0.602}{t}$$

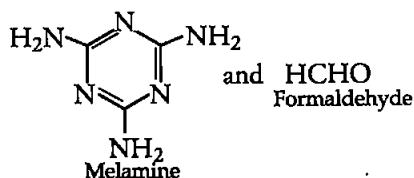
$$t = \frac{1.204}{0.125}$$

$$t = 9.632 \text{ minutes}$$

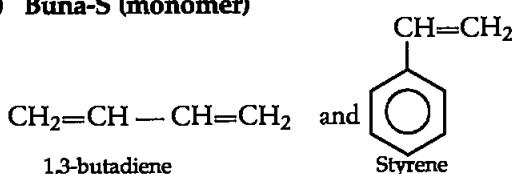
16. The following compounds are given to you :

2-Bromopentane, 2-Bromo-2-methylbutane,

1-Bromopentane


- Write the compound which is most reactive towards  $\text{S}_{\text{N}}2$  reaction.
- Write the compound which is optically active.
- Write the compound which is most reactive towards  $\beta$ -elimination reaction.

[3]

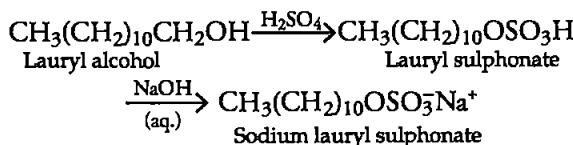

Answer :

- 1-bromopentane > 2-bromopentane > 2-bromo-2-methylpentane (Reactivity towards,  $\text{S}_{\text{N}}2$  reaction)





**(c) Buna-S (monomer)**




20. Define the following : [3]

- (a) Anionic detergents
- (b) Limited spectrum antibiotics
- (c) Antiseptics

**Answer:**

**(a) Anionic detergents :** These detergents contain anionic hydrophilic group. These are manufactured from long chain of alcohols. These long chain alcohols are treated with conc.  $H_2SO_4$  to form alkyl hydrogen sulphates of high molecular mass and then are neutralized with alkali to form salts.



(b) **Limited Spectrum Antibiotics** : The antibiotics which are effective against single organism or disease are called limited spectrum antibiotics, example—streptomycin.

(c) **Antiseptics** : The chemical substances that are used to either kill or prevent the growth of micro-organisms are called antiseptics. These are not harmful to living tissues and can be safely applied on wounds, cuts, ulcers etc., example Soframycin.

21. Give reasons for the following :

(a) Red phosphorus is less reactive than white phosphorus.\*\*

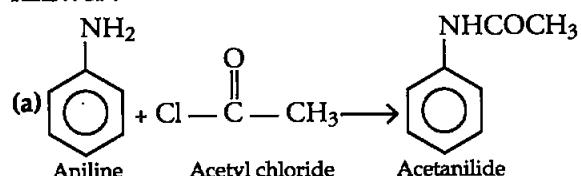
(b) Electron gain enthalpies of halogens are largely negative.

(c)  $\text{N}_2\text{O}_5$  is more acidic than  $\text{N}_2\text{O}_3$ .\*\* [3]

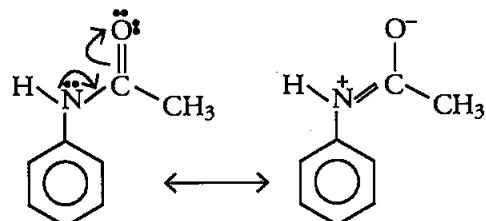
**Answer:**

(b) Electron gain enthalpies of halogens are largely negative in their respective periods.

This is due to the fact that the atoms of these elements have only one electron less than the stable noble gas ( $ns^2\ np^6$ ) configuration. Therefore, they have maximum tendency to accept an additional electron.

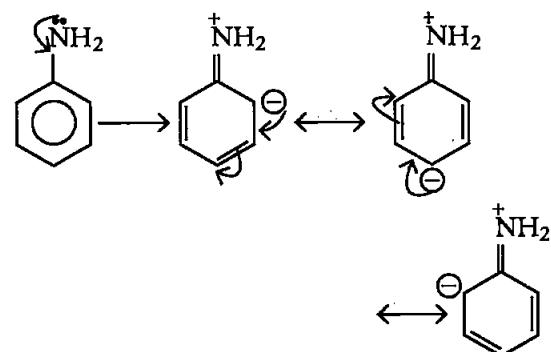

**22. Give reasons for the following:**

(a) Acetylation of aniline reduces its activation effect.


(b)  $\text{CH}_3\text{NH}_2$  is more basic than  $\text{C}_6\text{H}_5\text{NH}_2$ .

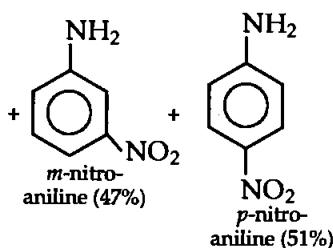
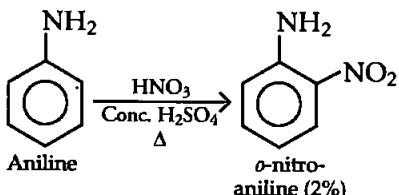
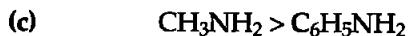
(c) Although  $\text{-NH}_2$  is *o/p* directing group, yet aniline on nitration gives a significant amount of *m*-nitroaniline. [3]

### Answer:




In acetanilide, the oxygen atom of the group withdraws electrons from  $\text{NH}_2$  group as shown below :






As a result, the electron pair on nitrogen gets displaced to the carboxyl group. Therefore, the unshared pair of electron on nitrogen is less available for donation of the electron to aromatic ring.

(b) In aniline, lone pair of  $e^-$  present on 'N' is in conjugation with the benzene ring and become less available for protonation because of resonance.



**\*\*Answer is not given due to the change in present syllabus.**

This conjugation of lone pair of  $e^-$  is not present in case of methyl amine and lone pair of  $e^-$  of 'N' are fully available for protonation. That's why the basicity order of aniline and methyl amine is :



The reason for the formation of large amount of *m*-nitroaniline is that under strongly acidic conditions, aniline gets protonated to anilinium ion ( $-\text{NH}_3^+$  group). This is a deactivating group and is meta-directing in nature.

23. After watching a programme on TV about the presence of carcinogens (cancer causing agents) Potassium bromate and potassium iodate in bread and other bakery products, Rupali a Class XII student decided to make others aware about the adverse effects of these carcinogens in foods. She consulted the school principal and requested him to instruct the canteen contractor to stop selling sandwiches, pizzas, burgers and other bakery products to the students. The principal took an immediate action and instructed the canteen contractor to replace the bakery products with some protein and vitamin rich food like fruits, salads, sprouts, etc. The decision was welcomed by the parents and the students.

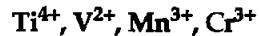
After reading the above passage, answer the following questions :

(a) What are the values (at least two) displayed by Rupali ?\*\*

\*\*Answer is not given due to the change in present Syllabus.

(b) Which polysaccharide component of carbohydrates is commonly present in bread ?  
 (c) Write the two types of secondary structures of proteins.  
 (d) Give two examples of water soluble vitamins. [4]

**Answer :**

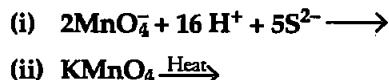

(b) Starch  
 (c) 1.  $\alpha$ -helix structure.  
 2.  $\beta$ -pleated sheet structure.  
 (d) Vitamin B and Vitamin C

24. (a) Account for the following :

(i) Transition metals show variable oxidation states.  
 (ii) Zn, Cd and Hg are soft metals.  
 (iii)  $E^\circ$  value for the  $\text{Mn}^{3+}/\text{Mn}^{2+}$  couple is highly positive (+1.57 V) as compared to  $\text{Cr}^{3+}/\text{Cr}^{2+}$ .  
 (b) Write one similarity and one difference between the chemistry of lanthanoid and actinoid elements. [5]

**OR**

(a) Following are the transition metal ions of  $3d$  series :




(Atomic numbers : Ti = 22, V = 23, Mn = 25, Cr = 24)

Answer the following :

(i) Which ion is most stable in an aqueous solution and why ?  
 (ii) Which ion is a strong oxidising agent and why ?  
 (iii) Which ion is colourless and why ?

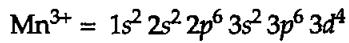
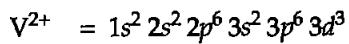
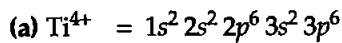
(b) Complete the following equation :



**Answer**

(a) (i) Transition metal ions shows variable oxidation states due to the participation of  $(n-1)d$  electrons in addition to outer  $ns$ -electrons because the energies of  $ns$  and  $(n-1)d$  subshells

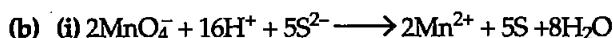
are almost equal. As a result of which the electrons of  $(n-1)d$  and ns subshell both part in bond formation.




(ii) Zn, Cd and Hg are soft metals because of their completely filled  $3d$ ,  $4d$  and  $5d$  orbitals respectively. Due to completely filled d-orbitals these metals are reluctant to form Zn-Zn, Cd-Cd and Hg-Hg bonds.

(iii) Highly positive value of  $E^\circ$  for  $Mn^{3+}/Mn^{2+}$  shows that  $Mn^{2+}$  ( $d^5$ ) is particularly stable. While low value of  $E^\circ$  for  $Cr^{3+}/Cr^{2+}$  shows that  $Cr^{2+}$  ( $d^4$ ) is less stable than  $Cr^{3+}$  ( $d^3$ ).

(b) **Similarity :** In lanthanoids and actinoids both the added electron enters the antipenultimate shell  $4f$  and  $5f$  respectively.

**Difference :** Lanthanoids show a common oxidation state of +3 while actinoids show different oxidation states other than +3.


**OR**



(i)  $Ti^{4+}$  is most stable in an aqueous solution because of full filled valence shell ( $3s^2 3p^6$ ) configuration (noble gas configuration).

(ii)  $Mn^{3+}$  is the strong agent as it oxidises other species it will reduce itself by taking an electron and will stabilise its configuration to  $3d^5$ .

(iii)  $Ti^{4+}$  is colourless due to absence of unpaired electrons ( $3s^2 3p^6$ )



25. (a) A 10% solution (by mass) of sucrose in water has a freezing point of 269.15 K. Calculate the freezing point of 10% glucose in water if the freezing point of pure water is 273.15 K.

**Given :**

$$\text{Molar mass of sucrose} = 342 \text{ g mol}^{-1}$$

$$\text{Molar mass of glucose} = 180 \text{ g mol}^{-1}$$

(b) Define the following terms :

(i) Molality ( $m$ )

(ii) Abnormal molar mass

[5]

**OR**

(a) 30 g of urea ( $M=60 \text{ g mol}^{-1}$ ) is dissolved in 846 g of water. Calculate the vapour pressure of water for this solution if vapour pressure of pure water at 298 K is 23.8 mm Hg.

(b) Write two differences between ideal solutions and non-ideal solutions.

**Answer :**

$$(a) T_o (\text{freezing point of water}) = 273.15 \text{ K}$$

$$T_s (\text{freezing point of sucrose solution}) = 269.15 \text{ K}$$

$$\text{Weight of sucrose in solution} = 10 \text{ g}$$

$$\text{Weight of glucose in solution} = 10 \text{ g}$$

$$\text{Molar mass of sucrose} = 342 \text{ g mol}^{-1}$$

$$\text{Molar mass of glucose} = 180 \text{ g mol}^{-1}$$

$$\text{Freezing point of glucose} = x$$

Depression in freezing point

$$\Delta T_f = \frac{K_f \times W_B \times 1000}{W_A \times 1000}$$

$$K_f = \frac{\Delta T_f \times W_A \times M_B}{W_B \times 1000}$$

In case of sucrose solution

$$K_f = \frac{(273.15 - 269.15) \times 90 \times 342}{10 \times 1000} \quad \dots(1)$$

In case of glucose solution

$$K_f = \frac{(273.15 - x) \times 90 \times 180}{10 \times 1000} \quad \dots(2)$$

$\therefore K_f$  is constant

thus equation (1) = equation (2)

$$\frac{(273.15 - 269.15) \times 90 \times 342}{10 \times 1000} = \frac{273.15 - x \times 90 \times 180}{10 \times 1000}$$

$$4 \times 342 = (273.15 - x) \times 180$$

$$(273.15 - x) = \frac{40 \times 342}{180} = 7.6$$

$$x = 265.55 \text{ K}$$

So, freezing point of glucose solution = 265.55 K.

(b) (i) **Molality** : It is the number of moles of the solute dissolved per 1000 g of the solvent. It is denoted by  $m$ .

$$\text{Molality} = \frac{\text{Moles of solute}}{\text{Mass of solvent (in gram)}} \times 1000$$

(ii) **Abnormal molar mass** : Those solute that dissociate or associate in solution, show abnormal molar mass in solution.

for example, Molar mass of ethanoic acid is greater than normal molar mass.



Molar mass of KCl in solution is reduced than normal molar mass.



OR

$$(a) W_B = 30 \text{ g} \quad M_B = 60 \text{ g mol}^{-1}$$

$$W_A = 846 \text{ g} \quad M_A = 18 \text{ g mol}^{-1}$$

$$P^o = 23.8 \text{ mm Hg}$$

$$P_s = x$$

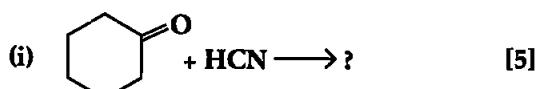
Relative lowering of vapour pressure

$$\frac{P^o - P_s}{P^o} = \frac{W_B \times M_A}{M_B \times W_A}$$

$$\frac{23.8 - x}{23.8} = \frac{30 \times 18}{60 \times 846}$$

$$23.8 - x = \frac{23.8}{94}$$

$$23.8 - x = 0.253$$


$$x = 23.8 - 0.253 = 23.547$$

So, vapour pressure of water for this solution = 23.597 mmHg

(b)

| Ideal Solutions                                                                         | Non-ideal Solutions                                                                      |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 1. The interactions between the components are similar to those in the pure components. | The interactions between the components are different from those of the pure components. |
| 2. There is no enthalpy change on mixing $\Delta H_{\text{mix}} = 0$                    | There is enthalpy change on mixing $\Delta H_{\text{mix}} \neq 0$                        |

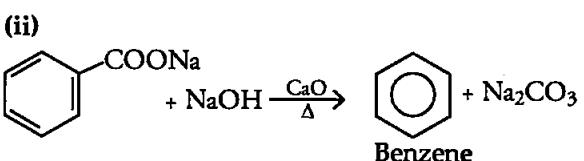
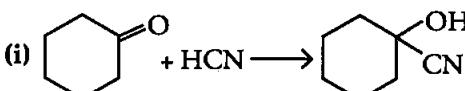
26. (a) Write the product(s) in the following reactions :

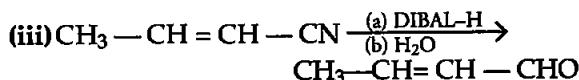


(b) Give simple chemical tests to distinguish between the following pairs of compounds :

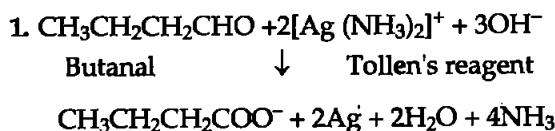
(i) Butanal and Butan-2-one  
(ii) Benzoic acid and Phenol

OR

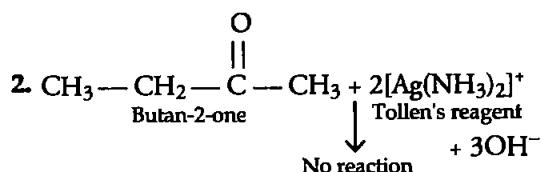


(a) Write the reactions involved in the following :


(i) Etard reaction  
(ii) Stephen reduction

(b) How will you convert the following in not more than two steps :

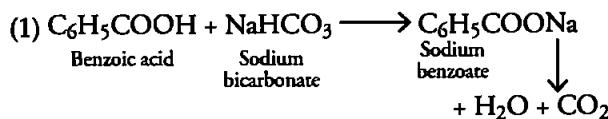

(i) Benzoic acid to Benzaldehyde  
(ii) Acetophenone to Benzoic acid  
(iii) Ethanoic acid to 2-Hydroxyethanoic acid

Answer : (a)





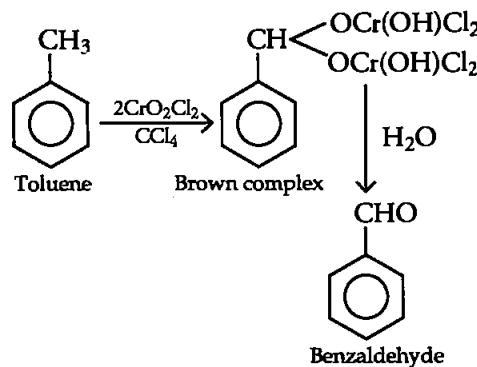

**(b) (i) Butanal and Butan-2-one**



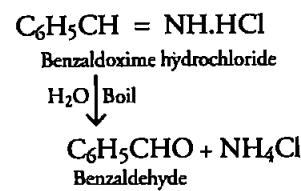
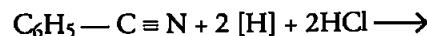
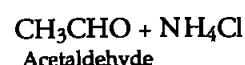
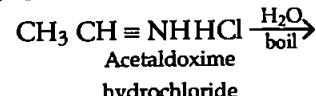
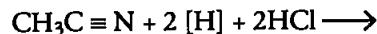

This reaction is known as silver mirror test—



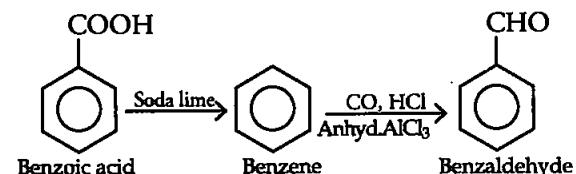
Thus Butanal gives silver mirror test with Tollen's reagent whereas Butan-2-one does not.


**(ii) Benzoic acid and phenol**

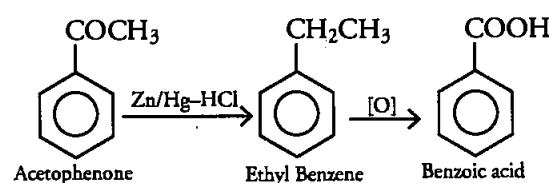







Thus, Benzoic acid gives sodium benzoate on reaction with sodium bicarbonate whereas phenol gives no reaction with sodium bicarbonate.

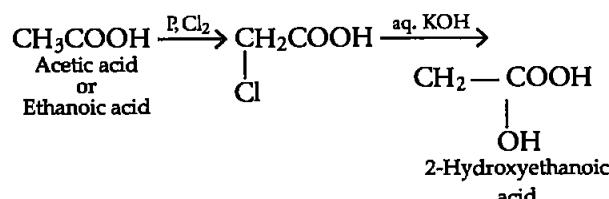
**OR**


**(a) (i) Etard reaction :** The oxidation of toluene to benzaldehyde with chromyl chloride ( $\text{CrO}_2\text{Cl}_2$ ) dissolved in  $\text{CCl}_4$  or  $\text{CS}_2$ .




**(ii) Stephen reaction :** The partial reduction of alkyl or aryl cyanides to the corresponding aldehydes with a suspension of anhydrous  $\text{SnCl}_2$  in ether saturated with  $\text{HCl}$  at room temperature followed by hydrolysis.




**(b) (i) Benzoic acid to Benzaldehyde**



**(ii) Acetophenone to Benzoic acid**



**(iii) Ethanoic acid to 2-hydroxyethanoic acid**



Students don't need to purchase any Guide, Question Bank or Sample/model paper from market. All material will be available on this website in the form of free PDFs by 30 September. On website [www.cbsepdf.com](http://www.cbsepdf.com) following materials will be provided :

1. NCERT Solutions
2. Previous Years Papers (2011-2019)
3. Previous Years Chapterwise Question Bank
4. 20 Solved Sample Paper

Students can download from following website

**[www.cbsepdf.com](http://www.cbsepdf.com)**

A mission for free content for all.

# Chemistry 2019 (Outside Delhi)

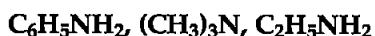
**SET I**

Time allowed : 3 hours

Maximum marks : 70

**General Instructions :**

- All questions are compulsory.
- Section A : Questions number 1 to 5 are very short answer questions and carry 1 mark each.
- Section B : Questions number 6 to 12 are short answer questions and carry 2 marks each.
- Section C : Questions number 13 to 24 are also short answer questions and carry 3 marks each.
- Section D : Questions number 25 to 27 are long answer questions and carry 5 marks each.
- There is no overall choice. However, an internal choice has been provided in two questions of one mark, two questions of two marks, four questions of three marks and all the three questions of five marks weightage. You have to attempt only one of the choices in such questions
- Use of log tables, if necessary. Use of calculators is **not** allowed.


## SECTION-A

1. Out of KCl and AgCl, which one shows Schottky defect and why? \*\* [1]

**OR**

Why does ZnO appear yellow on heating? \*\*

2. Arrange the following in decreasing order of basic character : [1]



**Answer :** Decreasing order of basic character :



3. What type of colloid is formed when a solid is dispersed in a liquid? Give an example. [1]

**Answer :**

Sols are formed when a solid is dispersed in liquid. Example – Paints.

4. Out of Chlorobenzene and Cyclohexyl chloride, which one is more reactive towards nucleophilic substitution reaction and why? [1]

**Answer :** Cyclohexyl chloride is more reactive towards nucleophilic substitution reaction,

because the carbon bearing the chlorine atom is deficient in electron and seeks a nucleophile. In Chlorobenzene the carbon bearing the halogen is a part of aromatic ring and is electron rich due to the electron density in the ring.

5. What is the basic structural difference between starch and cellulose? [1]

**OR**

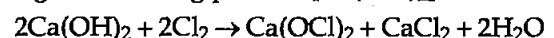
Write the products obtained after hydrolysis of DNA.

**Answer :** Starch consists of two components- amylose and amylopectin. Amylose is a long linear chain of  $\alpha$ -D-(+)-glucose units joined by  $\text{C}_1\text{-C}_4$  glycosidic linkage ( $\alpha$ -link). Amylopectin is a branched-chain polymer of  $\alpha$ -D-glucose units, in which the chain is formed by  $\text{C}_1\text{-C}_4$  glycosidic linkage and the branching occurs by  $\text{C}_1\text{-C}_6$  glycosidic linkage. On the other hand, cellulose is a straight-chain polysaccharide of  $\beta$ -D-glucose units joined by  $\text{C}_1\text{-C}_4$  glycosidic linkage ( $\beta$ -link).

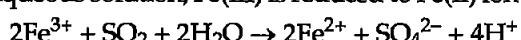
**OR**

Hydrolysis of DNA yields a pentose sugar ( $\beta$ -D-2deoxyribose), phosphoric acid and nitrogen containing heterocyclic compounds called bases (Adenine, Guanine, Cytosine and Thymine).

## SECTION-B


6. Write balanced chemical equations for the following processes :

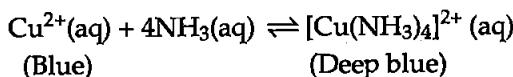
- $\text{Cl}_2$  is passed through slaked lime.
- $\text{SO}_2$  gas is passed through an aqueous solution of Fe (III) salt. [2]


**OR**

- Write two poisonous gases prepared from chlorine gas.
- Why does  $\text{Cu}^{2+}$  solution give blue colour on reaction with ammonia?

**Answer :** (a)  $\text{Cl}_2$  is passed through slaked lime to give bleaching powder  $[\text{Ca}(\text{OCl})_2]$

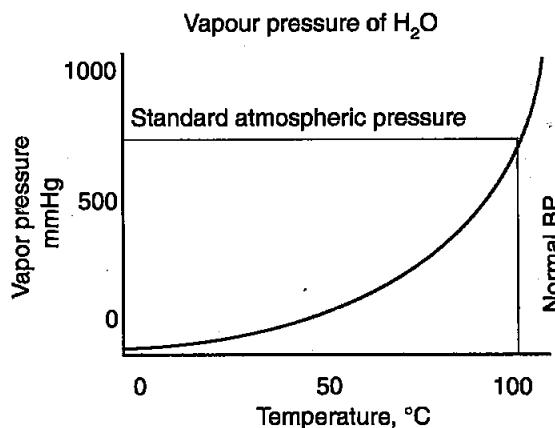



(b) When  $\text{SO}_2$  gas is passed through an Fe(III) aqueous solution, Fe(III) is reduced to Fe(II) ion :



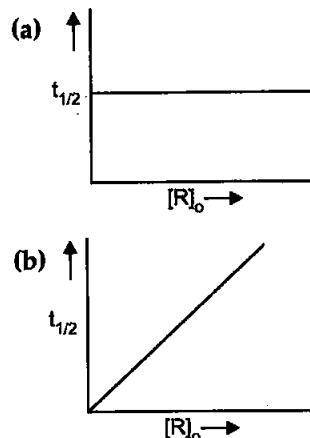
\*\* Answer is not given due to change in present syllabus.

OR


- (a) Two poisonous gases prepared from chlorine – Phosgene ( $\text{COCl}_2$ ) and tear gas ( $\text{CCl}_3\text{NO}_2$ ).
- (b) Nitrogen in ammonia has a lone pair of electrons, which makes it a Lewis base. It donates the electron pair and forms linkage with metal ions-



**7. Give reasons :**


(a) Cooking is faster in pressure cooker than in cooking pan.  
(b) Red Blood Cells (RBC) shrink when placed in saline water but swell in distilled water.

**Answer :** (a) Boiling points increase on increasing the pressure in case of liquids. Water used for cooking attains higher temperature than usual boiling temperature inside the pressure cooker due to the existing high pressure inside the pressure cooker vessel. This leads to faster flow of water inside the vegetables or grains etc. resulting in faster cooking of food in a pressure cooker than in the cooking pan.

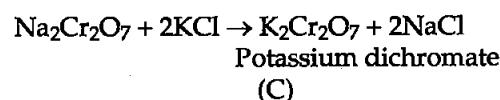
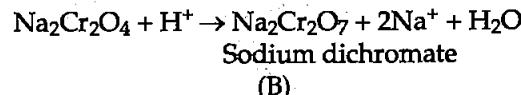
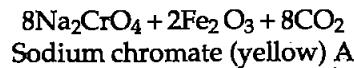


(b) Red blood cells shrink when placed in saline water because of exosmosis, i.e., water comes out from the cell to surrounding (more concentrated) to equate the concentration. Whereas, when placed in distilled water concentration within the cell becomes more than the surrounding, hence water comes inside and endosmosis takes place to equate the concentrations.

8. Define order of reaction. Predict the order of reaction in the given graphs :



where  $[R]_0$  is the initial concentration of reactant and  $t_{1/2}$  is half-life. [2]




**Answer :** It is defined as the sum of powers to which the concentration terms are raised in the rate law equation.

(a) In this graph as  $t_{1/2}$  is independent of initial reactant concentration, it is a first order reaction.

(b) In this graph as  $t_{1/2}$  is directly proportional to initial concentration of reactant hence, it is a zero order reaction.

9. When  $\text{FeCr}_2\text{O}_4$  is fused with  $\text{Na}_2\text{CO}_3$  in the presence of air it gives a yellow solution of compound (A). Compound (A) on acidification gives compound (B). Compound (B) on reaction with  $\text{KCl}$  forms an orange coloured compound (C). An acidified solution of compound (C) oxidises  $\text{Na}_2\text{SO}_3$  to (D). Identify (A), (B), (C) and (D). [2]

**Answer:**



10. Write IUPAC name of the complex  $[\text{Co}(\text{en})_2(\text{NO}_2)\text{Cl}]^+$ . What type of structural isomerism is

shown by this complex ?

[2]

OR

Using IUPAC norms, write the formulae for the following complexes :

(a) Hexaaquachromium (III) chloride  
(b) Sodium trioxalatoferate (III)

Answer : IUPAC name of  $[\text{Co}(\text{en})_2(\text{NO}_2)\text{Cl}]^+$  is Chlorobis(ethane-1,2-diamine)nitrocobalt(III).

This compound shows geometrical isomerism.

OR

(a) Hexaaquachromium(III) chloride—  
 $[\text{Cr}(\text{H}_2\text{O})_6]\text{Cl}_3$

(b) Sodium trioxalatoferate(III) –  
 $\text{Na}_3[\text{Fe}(\text{C}_2\text{O}_4)_3]$

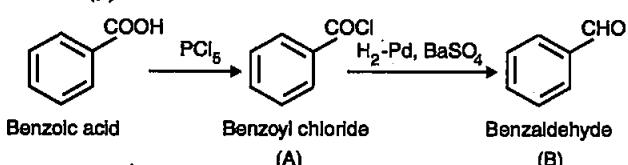
11. (a) Although both  $[\text{NiCl}_4]^{2-}$  and  $[\text{Ni}(\text{CO})_4]$  have  $sp^3$  hybridisation yet  $[\text{NiCl}_4]^{2-}$  is paramagnetic and  $[\text{Ni}(\text{CO})_4]$  is diamagnetic. Give reason. (Atomic no. of Ni = 28).

(b) Write the electronic configuration of  $d^5$  on the basis of crystal field theory when  
(i)  $\Delta_0 < P$  and  
(ii)  $\Delta_0 > P$

[2]

Answer : (a)  $[\text{NiCl}_4]^{2-}$  is a high spin complex and there are two unpaired electrons with  $3d^8$  electronic configuration of central metal atom, hence it is paramagnetic. Whereas in  $[\text{Ni}(\text{CO})_4]$  Ni is in zero oxidation state and contains no unpaired electrons, hence it is diamagnetic in nature.

(b) (i) Electronic configuration of  $d^5$  when  $\Delta_0 < P$  is given as  $t_{2g}^3 e_g^2$


(ii) Electronic configuration of  $d^5$  when  $\Delta_0 > P$  is given as  $t_{2g}^5 e_g^0$

12. Write structures of main compounds A and B in each of the following reactions : [2]

(a)  $\text{C}_6\text{H}_5\text{COOH} \xrightarrow{\text{PCl}_5} \text{A} \xrightarrow{\text{H}_2\text{-Pd-BaSO}_4} \text{B}$   
(b)  $\text{CH}_3\text{CN} \xrightarrow{\substack{(\text{i}) \text{CH}_3\text{MgBr} \\ (\text{ii}) \text{H}_3\text{O}^+}} \text{A} \xrightarrow{\text{Zn(Hg)/conc. HCl}} \text{B}$

Answer :

(a)



(b)



### SECTION-C

13. The following data were obtained for the reaction :  
 $\text{A} + 2\text{B} \rightarrow \text{C}$

| Experiment | [A]/M | [B]/M | Initial rate of formation of C/M min <sup>-1</sup> |
|------------|-------|-------|----------------------------------------------------|
| 1          | 0.2   | 0.3   | $4.2 \times 10^{-2}$                               |
| 2          | 0.1   | 0.1   | $6.0 \times 10^{-3}$                               |
| 3          | 0.4   | 0.3   | $1.68 \times 10^{-1}$                              |
| 4          | 0.1   | 0.4   | $2.40 \times 10^{-2}$                              |

(a) Find the order of reaction with respect to A and B.  
(b) Write the rate law and overall order of reaction.  
(c) Calculate the rate constant (k).

Answer : The reaction is-

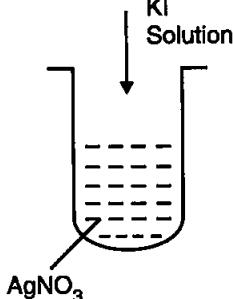


(a) It can be seen that when concentration of A is doubled keeping B constant, then the rate increases by a factor of 4 (from  $4.2 \times 10^{-2}$  to  $1.68 \times 10^{-1}$ ). This indicates that the rate depends on the square of the concentration of the reactant A. Also, when concentration of reactant B is made four times, keeping the concentration of reactant A constant, the reaction rate also becomes 4 times ( $2.4 \times 10^{-2}$  to  $6.0 \times 10^{-3}$ ). This indicates that the rate depends on concentration of reactant B to the first power.

(b) So, the rate equation will be :

$$\text{Rate} = k[\text{A}]^2[\text{B}]$$

Overall order of reaction will be  $2+1 = 3$ .


(c) Rate constant can be calculated by putting the values given.

$$4.2 \times 10^{-2} \text{ M min}^{-1} = k (0.2)^2 (0.3) \text{ M}$$

$$k = \frac{0.042}{0.012} \\ = 3.5 \text{ min}^{-1}$$

14. (a) Write the dispersed phase and dispersion medium of dust.

(b) Why is physisorption reversible whereas chemisorption is irreversible ?  
 (c) A colloidal sol is prepared by the method given in the figure. What is the charge of  $\text{AgI}$  colloidal particles formed in the test tube ? How is this sol represented ? [3]



**Answer :** (a) In dust the dispersed phase is solid particles and dispersion medium is air (gas).

(b) Physisorption occurs only because of physical attractive forces, like van der Waals forces between molecules of adsorbate and adsorbent, hence that can be reversed on application of bigger forces but chemisorption occurs due to chemical reaction between molecules of adsorbate and adsorbent, and hence can't be reversed.

(c) When KI solution is added to  $\text{AgNO}_3$  a positively charged sol results due to absorption of  $\text{Ag}^+$  ions from dispersion medium- $\text{AgI}/\text{Ag}^+$ (positively charged)

15. An element X with an atomic mass of 81 u has density  $10.2 \text{ g cm}^{-3}$ . If the volume of unit cell is  $2.7 \times 10^{-23} \text{ cm}^3$ , identify the type of cubic unit cell. (Given :  $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ )\*\* [3]

16. A solution containing  $1.9 \text{ g}$  per  $100 \text{ mL}$  of  $\text{KCl}$  ( $M = 74.5 \text{ g mol}^{-1}$ ) is isotonic with a solution containing  $3 \text{ g}$  per  $100 \text{ mL}$  of urea ( $M = 60 \text{ g mol}^{-1}$ ). Calculate the degree of dissociation of  $\text{KCl}$  solution. Assume that both the solutions have same temperature. [3]

**Answer :** Two solutions having same osmotic pressure at a given temperature are called isotonic solution. Now in the given problem, the  $\text{KCl}$  and urea solutions are given to be isotonic.

Osmotic pressure  $\pi$  is given by the equation –  $\pi = (n_2/V)RT$ , where,  $n_2$  = moles of solute,  $V$  = volume of a solution in litre.

Also,  $n_2 = w_2/M_2$ , where  $w_2$  = grams of solute and  $M_2$  = molar mass of solute.

The other given information are –

Molar mass of  $\text{KCl} = 74.5 \text{ g mol}^{-1}$

Weight of  $\text{KCl}$ ,  $w_2 = 1.9 \text{ g}$ ,  $V = 100 \text{ mL}$

So, for  $\text{KCl}$  –

\*\* Answer is not given due to change in present syllabus.

$$\pi = (w_2/M_2 \times V)RT$$

$$\begin{aligned}\pi RT_{\text{KCl}} &= 1.9/(74.5 \times 100) \\ &= 2.55 \times 10^{-4}\end{aligned}$$

Now as the solutions are isotonic at same temperature :

$$\pi RT_{\text{KCl}} = \pi RT_{\text{Urea}}$$

Hence, substituting the values for urea :

$$2.55 \times 10^{-4} = 3/M_2 \times 100$$

$$M_2 = 117.6$$

So, the experimentally determined molecular weight of urea is found to be as 117.6, so the degree of dissociation can be given as :

Osmotic pressure ( $\pi$ ) =

$$\frac{\text{Experimentally determined molecular weight}}{\text{Actual molecular weight}}$$

$$= 117.6 / 60$$

$$= 1.96 \approx 2$$

$$\alpha = \frac{i-1}{n-1} = \frac{1.96-1}{2-1} = 96\%$$

So, Urea dimerised in the given experimental solution.

17. Write the name and principle of the method used for refining of (a) Zinc, (b) Germanium, (c) Titanium. [3]

**Answer :** (a) Distillation is used for refining zinc. As zinc is a low boiling metal, the impure metal is evaporated and the pure metal is obtained as a distillate.

(b) Zone refining is used for refining Germanium. This method is based on principle that the impurities are more soluble in the melt than in the solid state of the metal.

(c) Titanium is refined by van Arkel method. This method is used for removal of oxygen and nitrogen present as impurity. The crude metal is heated in an evacuated vessel with iodine to obtain metal iodide, which volatilizes being covalent. Later this metal iodide is decomposed through electrical heating to obtain the pure metal.

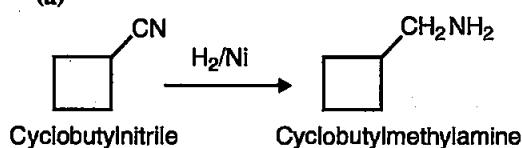
18. Give reasons for the following :

(a) Transition metals form complex compounds.  
 (b)  $E^\circ$  values of  $(\text{Zn}^{2+}/\text{Zn})$  and  $(\text{Mn}^{2+}/\text{Mn})$  are more negative than expected.  
 (c) Actinoids show wide range of oxidation states. [3]

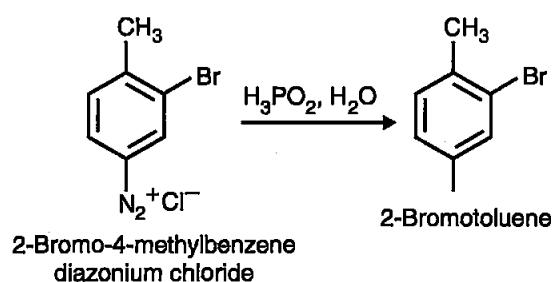
**Answer :** (a) Transition elements have partly filled d-orbitals due to which they have variable oxidation states which enables them to



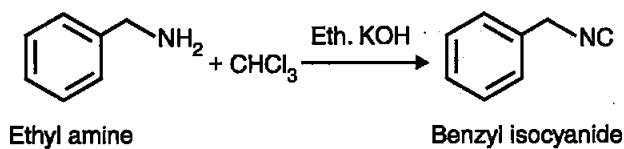



OR

How do you convert the following :

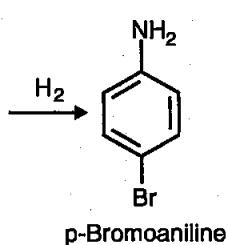
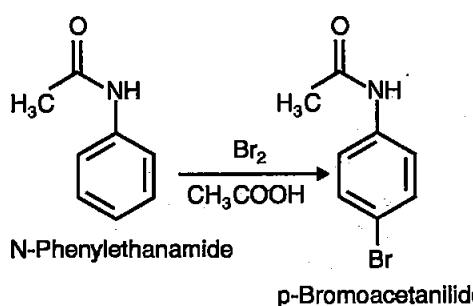

(a) N-phenylethanamide to *p*-bromaniline  
 (b) Benzene diazonium chloride to nitrobenzene  
 (c) Benzoic acid to aniline

Answer :

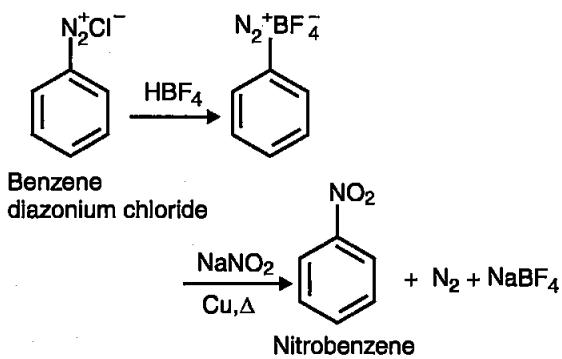

(a)



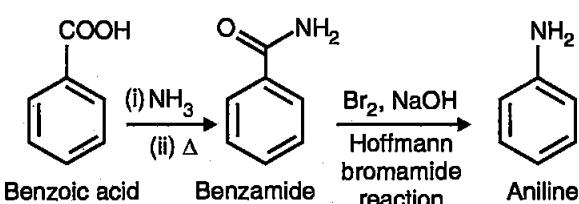
(b)


(c)




OR

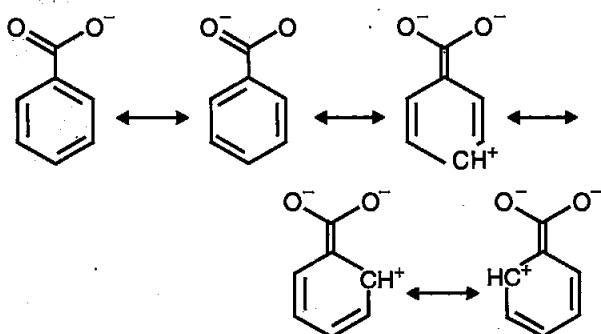

(a)



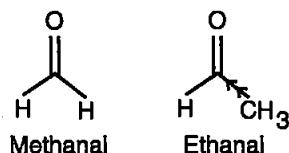
(b)



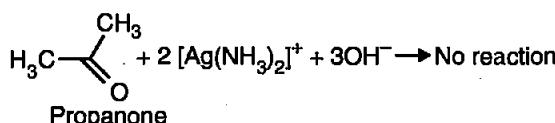
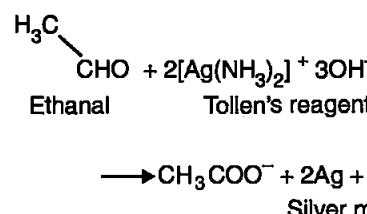
(c)




23. (a) Give reasons :


(i) Benzoic acid is a stronger acid than acetic acid.  
 (ii) Methanal is more reactive towards nucleophilic addition reaction than ethanal.

(b) Give a simple chemical test to distinguish between propanal and propanone. [3]



Answer : (a) (i) Benzoic acid is a stronger acid than acetic acid because the benzoate anion (conjugate base of benzoic acid) formed after loss of  $H^+$  is stabilized by resonance, whereas acetate ion ( $CH_3COO^-$ ) has no such extra stability. Hence, Benzoic acid has more tendency of losing proton compared to acetic acid hence more acidic.

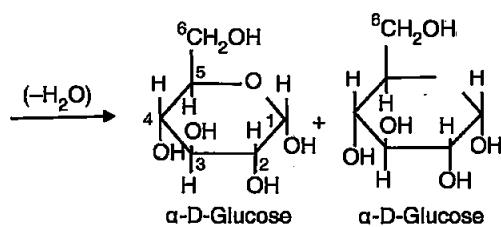
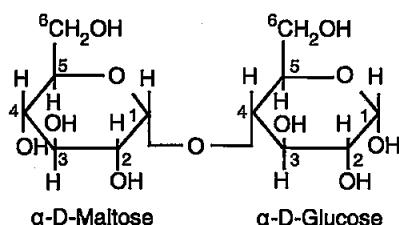


(ii) Methanal is more reactive towards nucleophilic addition reaction than ethanal because in ethanal there is a methyl group attached to the carbonyl carbon (centre for nucleophile attack) and  $+I$  effect of the methyl group decreases the nucleophilicity of carbonyl carbon by increasing the electron density at carbonyl carbon.

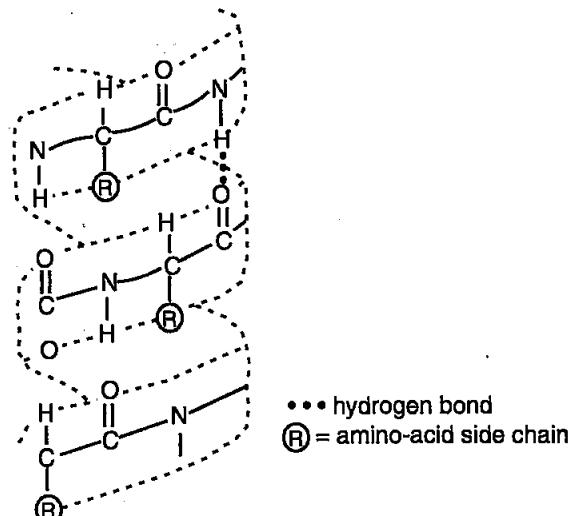


(b) Propanal and propanone can be distinguished using Tollen's reagent by silver mirror test. Propanal being an aldehyde reacts with Tollen's reagent to give silver deposition whereas propanone being a ketone does not give the reaction.





24. (a) What are product of hydrolysis of maltose ?  
 (b) What type of bonding provides stability to  $\alpha$ -helix structure of protein ?  
 (c) Name the vitamin whose deficiency causes pernicious anaemia. [3]

OR


Define the following terms :

(a) Invert sugar  
 (b) Native protein  
 (c) Nucleotide

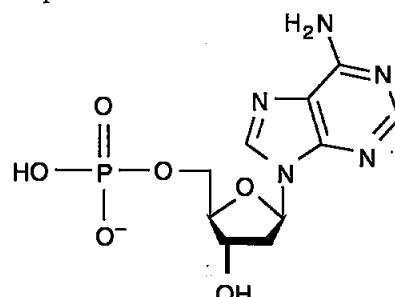
Answer : (a) On hydrolysis maltose gives two molecules of  $\alpha$ -D-glucose.



(b)  $\alpha$ -Helix structure of proteins is stabilized by hydrogen bonds between  $-NH$  group of each amino acid and  $-COOH$  group of amino acid at adjacent turn.



(c) Deficiency of Vitamin B<sub>12</sub> causes pernicious anaemia.


OR

(a) Invert sugar – It is a mixture of glucose and fructose obtained after hydrolysis of sucrose. Sucrose is dextrorotatory, but after hydrolysis gives a mixture of dextrorotatory glucose and levorotatory fructose which outweighs in magnitude and hence the whole mixture becomes levorotatory hence the mixture obtained is called invert sugar.

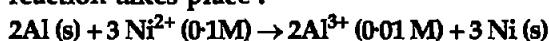
(b) Native protein – Protein found in a biological system with a unique three-dimensional structure and biological activity is called a native protein.

(c) Nucleotide – They are building blocks of DNA/RNA. These consist of a pentose sugar moiety attached to a nitrogenous base at 1' position and a phosphoric acid molecule at 5' position.

Example :



#### SECTION-D


25. (a) The conductivity of  $0.001 \text{ mol L}^{-1}$  acetic acid is  $4.95 \times 10^{-5} \text{ S cm}^{-1}$ . Calculate the dissociation constant if  $\Lambda_m^0$  for acetic acid is  $390.5 \text{ S cm}^2 \text{ mol}^{-1}$ .  
 (b) Write Nernst equation for the reaction at  $25^\circ\text{C}$  :



(c) What are secondary batteries ? Give an example. [5]

OR

(a) Represent the cell in which the following reaction takes place :



Calculate its emf if  $E_{\text{cell}}^{\circ} = 1.41 \text{ V}$ .

(b) How does molar conductivity vary with increase in concentration for strong electrolyte and weak electrolyte ? How can you obtain limiting molar conductivity ( $\Lambda_m^0$ ) for weak electrolyte ?

Answer : (a) Conductivity  $\Lambda_m$  of solution is given by the following equation :

$$\Lambda_m = \frac{k}{c}, \text{ where } k \text{ is dissociation constant and } c \text{ is the concentration of solution.}$$

Here, given.

$$\text{Conductivity, } k = 4.95 \times 10^{-5} \text{ S cm}^{-1}$$

Limiting molar conductivity,

$$\Lambda_m^0 = 390.5 \text{ S cm}^2 \text{ mol}^{-1}$$

Concentration,

$$\begin{aligned} c &= 0.001 \text{ mol L}^{-1} \\ &= 1 \times 10^{-3} \text{ mol L}^{-1} \end{aligned}$$

Substituting the given values in above equation

Molar conductivity,

$$\begin{aligned} \Lambda_m &= \left( \frac{49.5 \times 10^{-5} \text{ S cm}^{-1}}{1 \times 10^{-3} \text{ mol L}^{-1}} \right) 10^3 \text{ cm}^3 \text{ L}^{-1} \\ &= 49.5 \text{ S cm}^2 \text{ mol}^{-1} \end{aligned}$$

Now, degree of dissociation  $\alpha$ , is given by

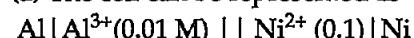
$$\alpha = \frac{\Lambda_m}{\Lambda_m^0}$$

Putting the values,

$$\begin{aligned} \alpha &= \frac{49.5}{390.5} \text{ S cm}^2 \text{ mol}^{-1} \\ &= 0.1267 \end{aligned}$$

Dissociation constant,  $k$ , for acetic acid, can be given as

$$\begin{aligned} k &= \frac{c\alpha^2}{(1-\alpha)} \\ &= \frac{[1 \times 10^{-3} \text{ mol L}^{-1} \times (0.1267)^2]}{(1-0.1267)} \\ &= \frac{0.016 \times 10^{-3} \text{ mol L}^{-1}}{0.8733} \\ &= 1.8 \times 10^{-5} \text{ mol L}^{-1} \end{aligned}$$


(b) Nernst equation for the given reaction can be written as

$$E_{\text{cell}} = \frac{E_{\text{cell}}^{\circ} - RT}{2F \ln \left( \frac{[\text{Al}^{3+}]^2}{[\text{Cu}^{2+}]^3} \right)}$$

(c) A secondary battery can be recharged after use, by passing current through it in opposite direction so that it can be used again. Example : The most important secondary cell is lead storage cell. It consists of lead anode and a grid of lead packed with lead dioxide as cathode. A 38% solution of sulphuric acid is used as an electrolyte.

OR

(a) The cell can be represented as



Cell potential is given by the following equation in this case

$$E_{\text{cell}} = \frac{E_{\text{cell}}^{\circ} - RT}{2F \ln \left( \frac{[\text{Al}^{3+}]^2}{[\text{Ni}^{2+}]^3} \right)}$$

Given

$E_{\text{cell}}^{\circ} = 1.41 \text{ V}$ , concentration of  $\text{Al}^{3+}$  ions is  $0.01 \text{ M}$  and  $\text{Ni}^{2+}$  ions is  $0.1 \text{ M}$

Putting the values in equation

$$\begin{aligned} E_{\text{cell}} &= \frac{1.41 \text{ V} - 0.059}{2 \log \left( \frac{0.01^2}{0.1^3} \right)} \\ &= 1.38 \text{ V} \log \left( \frac{1 \times 10^{-4}}{1 \times 10^{-3}} \right) \\ &= 1.38 - (-1) \\ &= 2.38 \text{ V} \end{aligned}$$

So, emf of the cell is  $2.38 \text{ V}$ .

(b) For strong electrolytes the molar conductivity is increased only slightly on dilution. A strong electrolyte is completely dissociated in solution and thus, furnishes all ions for conductance. However, at higher concentrations, the dissociated ions are close to each other and thus, the interionic attractions are greater. These forces retard the motion of the ions and thus, conductivity is low. With decrease in concentration (dilution), the ions move away from each other thereby feeling less attractive forces from the counter ions. This results in an increase in molar conductivity with dilution. The molar conductivity approaches a maximum limiting value at infinite dilution designated as  $\Lambda_m^0$ .

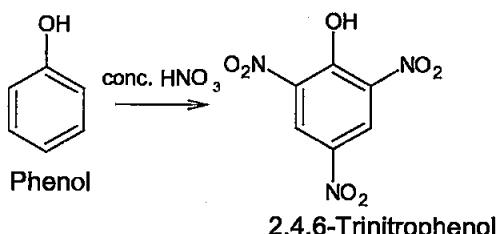
In case of weak electrolytes as the solution of a weak electrolyte is diluted, its ionization is increased. This results in more number of ions in solution and thus, there is an increase in molar conductivity, also there is a large increase in the value of molar conductivity with dilution, especially near infinite dilution. However, the conductance of a weak electrolyte never approaches a limiting value. Or in other words it is not possible to find conductance at infinite dilution (zero concentration).

So, limiting molar conductivity for weak electrolytes is obtained by using Kohlrausch law, from the limiting molar conductivities of individual ions ( $\lambda^\circ$ ).

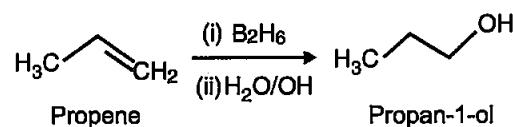
Kohlrausch law of independent migration of ions states that limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and the cation of the electrolyte.

$$\Lambda^\circ_m = \lambda^\circ_+ + \lambda^\circ_-$$

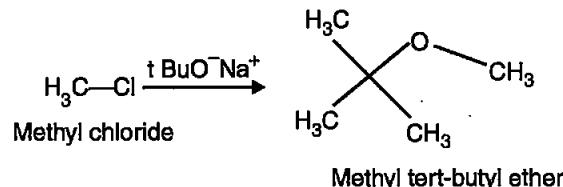
26. (a) Give equation of the following reactions :  
 (i) Phenol is treated with conc.  $\text{HNO}_3$ .  
 (ii) Propene is treated with  $\text{B}_2\text{H}_6$  followed by  $\text{H}_2\text{O}_2/\text{OH}^-$ .  
 (iii) Sodium t-butoxide is treated with  $\text{CH}_3\text{Cl}$ .  
 (b) How will you distinguish between butan-1-ol and butan-2-ol ?  
 (c) Arrange the following in increasing order of acidity :  
 Phenol, ethanol, water


[5]

OR


(a) How can you obtain Phenol from (i) Cumene, (ii) Benzene sulphonic acid, (iii) Benzene diazonium chloride ?

(b) Write the structure of the major product obtained from dinitration of 3-methylphenol.  
 (c) Write the reaction involved in Kolbe's reaction.


Answer : (a) (i) Phenol is treated with conc.  $\text{HNO}_3$  to obtain 2,4,6-trinitrophenol picric acid.

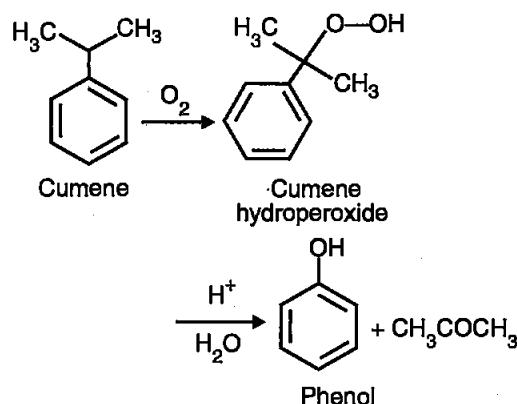


(ii) Propene undergoes hydroboration-oxidation when treated with  $\text{B}_2\text{H}_6$  followed by hydrogen peroxide in basic medium to give propan-1-ol.

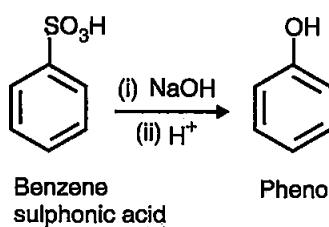


(iii) Methyl tert-butyl ether is produced when sodium tert-butoxide is treated with methyl chloride.

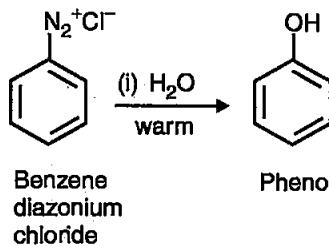



(b) Butan-1-ol and Butan-2-ol can be distinguished using Lucas reagent ( $\text{ZnCl}_2 + \text{HCl}$ ), where butan-2-ol would react with Lucas reagent in around 5 minutes to give a white precipitate of 2-chlorobutane, whereas butan-1-ol won't give any reaction at room temperature.

(c) Increasing order of acidity can be given as




OR


(a) (i) Phenol from cumene



(ii) Phenol from benzene sulphonic acid



(iii) Phenol from benzene diazonium chloride





# Chemistry 2019 (Outside Delhi)

**SET II**

Time allowed : 3 hours

Maximum marks : 70

**Note :** Except for the following questions all the remaining questions have been asked in the previous set.

## SECTION-A

2. Arrange the following in increasing order of  $pK_b$  values :



**Answer :** These can be arranged in increasing order of  $pK_b$  values as follows :



3. What type of colloid is formed when a liquid is dispersed in a solid ? Give an example. [1]

**Answer :** When a liquid is dispersed in a solid, a 'gel' is formed. Example : Butter.

4. Out of chlorobenzene and *p*-nitrochlorobenzene, which one is more reactive towards nucleophilic substitution reaction and why ? [1]

**Answer :** *p*-Nitrochlorobenzene would be more reactive towards nucleophilic substitution reaction compared to chlorobenzene. In chlorobenzene the carbon bearing the halogen is a part of aromatic ring and is electron rich due to the electron density in the ring so, it does not attract the nucleophile. The  $-NO_2$  substitution lessens the electron density on the benzene ring due to its electron withdrawing nature, making the electron density on ring less compared to chlorobenzene, hence *p*-nitro chlorobenzene attracts nucleophiles better.

## SECTION-B

7. Give reasons :

(a) A decrease in temperature is observed on mixing ethanol and acetone.

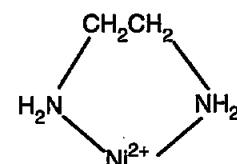
(b) Potassium chloride solution freezes at a lower temperature than water. [2]

**Answer :** (a) Upon mixing molecules of ethanol and acetone have strong intermolecular attractions due to which heat is evolved from reaction system and hence cooling of mixture is observed.

(b) Potassium chloride solution is a solution of non-volatile solute KCl and water solution. We know that, at the freezing point of a substance, the solid phase (here ice) is in dynamic

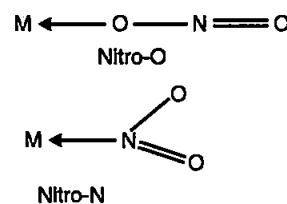
equilibrium with the liquid phase. A solution freezes when its vapour pressure equals the vapour pressure of pure solid solvent. Now, according to Raoult's law when a non-volatile solid is added to the solvent (in this case it is KCl), its vapour pressure decreases and now it would become equal to that of solid solvent at lower temperature. Thus, the freezing point of solvent decreases.

10. Define the following terms with a suitable example of each : [2]


(a) Chelate complex  
(b) Ambidentate ligand

**OR**

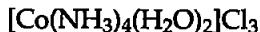
Using IUPAC norms, write the formulae for the following complexes :


(a) Tetraamminediaquacobalt (III) chloride  
(b) Dibromidobis (ethane-1, 2-diamine) platinum (IV) nitrate

**Answer :** (a) **Chelate complex** –Chelate complexes are coordination or complex compound consisting of a central metal atom attached to a large molecule, called a ligand, in a cyclic or ring structure. The ligands are bi- or polydentate i.e., they can attach to metal atom through two or more than two binding sites. An example of a chelate ring occurs in the ethylenediamine-nickel complex.



A chelate complex


(b) **Ambidentate ligand** : Ligands which can ligate (attach to metal atom) through two different atoms is called ambidentate ligand. One example of such ligand is  $NO_2^-$ , this can bind through both the atoms, nitrogen and oxygen.



## OR

## IUPAC names

(a) Tetramminediaquacobalt(III)chloride

(b) Dibromidobis(ethane-1,2-diamine) platinum(IV) nitrate  $[\text{PtBr}_2(\text{en})_2](\text{NO}_3)_2$ 

11. (a) Using valence bond theory, write the hybridisation and magnetic character of the complex  $[\text{Fe}(\text{CN})_6]^{4-}$ . (Atomic no. of Fe = 26)  
 (b) Write the electronic configuration of  $d^6$  on the basis of field theory when

(i)  $\Delta_0 < P$  and(ii)  $\Delta_0 > P$ 

[2]

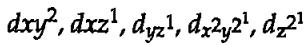
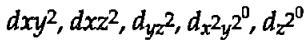
Answer : (a)  $[\text{Fe}(\text{CN})_6]^{4-}$  is a low spin or inner orbital complex as  $\text{CN}^-$  is a strong field ligand.

## Hybridisation Scheme

Orbitals of  $\text{Fe}^{3+}$  ion

|   |   |   |   |   |    |    |    |
|---|---|---|---|---|----|----|----|
| 1 | 1 | 1 | 1 | 1 | □  | □  | □  |
|   |   |   |   |   | 3d | 4s | 4p |

 $d^2\text{-sp}^3$  hybridised orbitals of  $\text{Fe}^{3+}$ 



|   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|
| 1 | 1 | 1 | □ | □ | □ | □ |
|   |   |   |   |   |   |   |

$d^2\text{-sp}^3$  hybrid

 $[\text{Fe}(\text{CN})_6]^{4-}$   
(Inner orbitals/Low spin complex)

|   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | □ | □ | □ | □ | □ |
|---|---|---|---|---|---|---|---|

6 pairs of electrons from 6 CN molecules

 $[\text{Fe}(\text{CN})_6]^{4-}$  is diamagnetic as there is no unpaired electron left.(b) (i) Electronic configuration of  $d^6$  when  $\Delta_0 < P$ , that is in case of weak field ligand(ii) Electronic configuration of  $d^6$  when  $\Delta_0 > P$ , that is in case of strong field ligand

## SECTION C

13. (a) Write the dispersed phase and dispersion medium of milk.

(b) Why is adsorption exothermic in nature?

(c) Write Freundlich adsorption isotherm for gases at high pressure. [3]

Answer : (a) Dispersed phase of milk is liquid and dispersion medium of milk is liquid.

(b) During the process of adsorption molecules

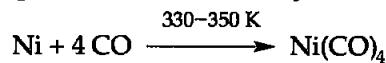
of adsorbate and adsorbent come closer to form physical or chemical bonds hence getting stabilized, in this process heat is evolved leading the overall process to be exothermic.

(c) Freundlich adsorption isotherm for gases at high pressure.

It is an empirical relationship between the quantity of gas adsorbed by unit mass of solid adsorbent and pressure at a particular temperature :

$$x/m = k p^{1/n} (n > 1)$$

Where,  $x$  is the mass of the gas adsorbed on mass  $m$  of the adsorbent at pressure  $p$ ,  $k$  and  $n$  are constants which depend on the nature of the adsorbent and the gas at a particular temperature.


The relationship is generally represented in the form of a curve  $x/m$  is plotted against the pressure. This curve always approach saturation towards high pressure, thus indicating that at adsorption though increases with increase in pressure but till a limit and at high pressures no further adsorption is observed.

15. Write the name and principle of the method used for refining of (a) Tin, (b) Copper, (c) Nickel. [3]

Answer : (a) Tin : It is refined through liquation. In this method a low melting metal like tin is made to flow on a sloping surface, where the higher melting impurities are left behind and the lower melting metal is collected at the slope end.


(b) Copper : It is refined through electrolytic refining. Anode is made of impure copper and pure copper stripes are taken as cathode. They are dipped in acidified solution of copper sulphate as electrolyte. The net result of electrolysis is the transfer of copper in pure form from the anode to the cathode and the impurities gets deposited as anode mud.

(c) Nickel : It is refined through Mond's process. In this process, Nickel is heated in a stream of carbon monoxide forming a volatile complex, nickel tetracarbonyl.



The carbonyl is subjected to higher temperature

so that it is decomposed giving the pure metal.



**16. Give reason for the following :**

(a) Transition metals show variable oxidation states.

(b)  $E^\circ$  value of  $(\text{Zn}^{2+}/\text{Zn})$  is negative while that of  $(\text{Cu}^{2+}/\text{Cu})$  is positive.

(c) Higher oxidation state of Mn with fluorine is +4 whereas with oxygen is +7. [3]

**Answer :** (a) Transition metals show variable oxidation states because their  $d$ -orbitals are incompletely filled and different arrangements of electrons are possible according to the chemical environment of metal ion hence, the ions can occupy variable oxidation states.

(b)  $E^\circ$  value for  $\text{Zn}/\text{Zn}^{2+}$  is negative because conversion of Zn to  $\text{Zn}^{2+}$  gives it a completely filled  $d^{10}$  configuration and extra stability gained by  $\text{Zn}^{2+}$ . Whereas, conversion of Cu to  $\text{Cu}^{2+}$  does not give any extra stability, hence it has a positive  $E^\circ$  value.

(c) Mn has the highest oxidation state of +4 with fluorine but with oxygen it is +7. This is due to the ability of oxygen to form multiple bonds with the metal ion, whereas fluorine being of small size and devoid of  $d$ -orbitals can't form multiple bonds.

**19. Write the structures of monomers used for getting the following polymers :**

(a) Nylon-6, 6

(b) Bakelite

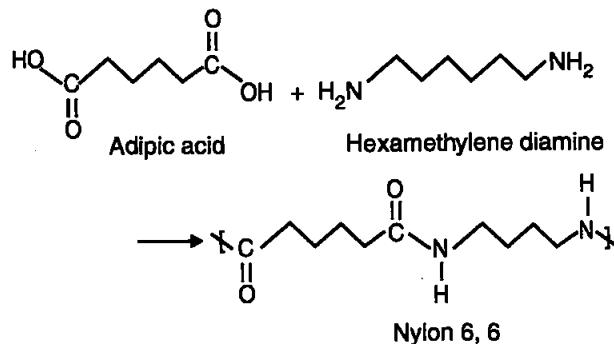
(c) Buna-S

[3]

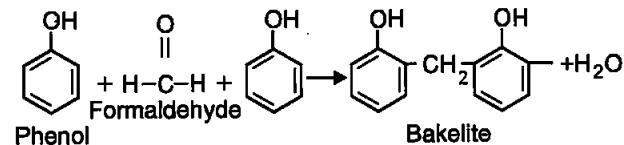
**OR**

(a) Write one example each of :

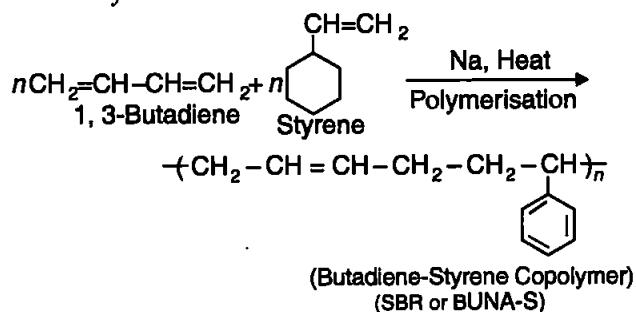
(i) Thermoplastic polymer


(ii) Elastomers

(b) Arrange the following polymers in the increasing order of their intermolecular forces :


Polythene, Nylon-6, 6, Buna-S

(c) Which factor provides crystalline nature to a polymer like Nylon ?


**Answer :** (a) Monomers of Nylon-6, 6 are adipic acid and hexamethylene diamine.



(b) Monomers of bakelite are phenol and formaldehyde :



(c) Monomers of Buna-S are 1, 3-Butadiene and Styrene



(Butadiene-Styrene Copolymer)  
(SBR or BUNA-S)

**OR**

(a)(i) Example of thermoplastic polymer – polythene, polystyrene.

(ii) Example of elastomer – Neoprene.

(b) In increasing order of their intermolecular force, they can be arranged as :

Buna-S < Polythene < Nylon-6, 6

(c) Strong intermolecular forces between the polymer molecules, such as hydrogen bonding leads to closed packed structure, thus imparting crystalline nature to the polymers.

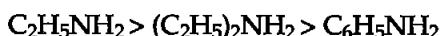
**Chemistry 2019 (Outside Delhi)****SET III**

Time allowed : 3 hours

Maximum marks : 70

**Note :** Except for the following questions all the remaining questions have been asked in the previous sets.

**SECTION-A**


1. Out of Chlorobenzene and Cyclohexyl chloride, which one is more reactive towards nucleophilic substitution reaction and why ? [1]

**Answer :** Cyclohexyl chloride is more reactive towards nucleophilic substitution reaction, because the carbon bearing the chlorine atom is deficient in electron and seeks a nucleophile. In Chlorobenzene the carbon bearing the halogen is a part of aromatic ring and is electron rich due to the electron density in the ring.

2. Arrange the following in decreasing order of solubility in water :



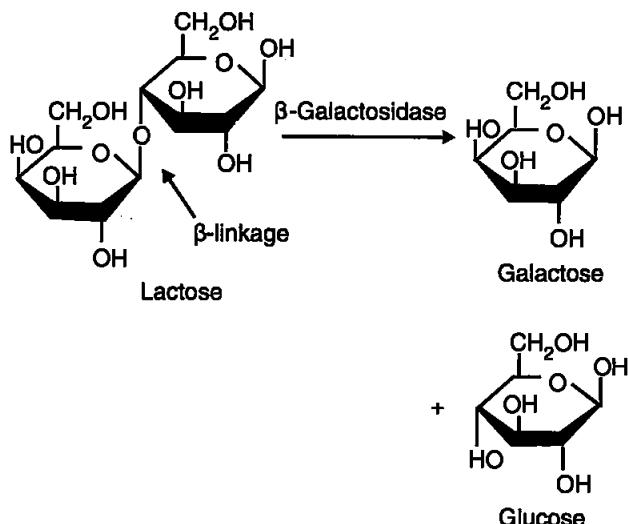
**Answer :** Decreasing order of solubility in water is :



3. What type of colloid is formed when a solid is dispersed in a gas ? Give an example. [1]

**Answer :** Aerosol is the type of colloid formed when solid is dispersed in gas. Example : smoke and dust.

5. What is the difference between amylose and amylopectin ? [1]


**OR**

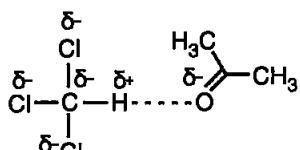
Write the products obtained after hydrolysis of lactose.

**Answer :** Amylose is a long linear chain of  $\alpha$ -D-(+)-glucose units joined by C<sub>1</sub>-C<sub>4</sub> glycosidic linkage ( $\alpha$ -link), whereas Amylopectin is a branched-chain polymer of  $\alpha$ -D-glucose units, in which the chain is formed by C<sub>1</sub>-C<sub>4</sub> glycosidic linkage and the branching occurs by C<sub>1</sub>-C<sub>6</sub> glycosidic linkage.

**OR**

Galactose and Glucose are the products obtained after hydrolysis of lactose.

**SECTION-B**


7. Give reasons :

(a) An increase in temperature is observed on mixing chloroform and acetone.

(b) Aquatic animals are more comfortable in cold water than in warm water. [2]

**Answer :**

(a) A mixture of chloroform and acetone forms a solution with negative deviation from Raoult's law. This is because chloroform molecule is able to form hydrogen bond with acetone molecule as shown by the following figure :



Hydrogen bonding between chloroform and acetone

This decreases the escaping tendency of molecules for each component, and consequently the vapour pressure decreases and the temperature of the solution is increased because of stability attained by the molecule by associating and releasing energy.

(b) Solubility of gases in liquid increases on decreasing temperature, hence cold water has more dissolved oxygen because of which aquatic species find themselves more comfort-

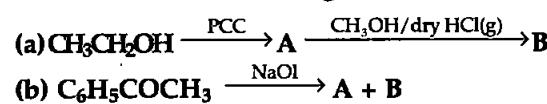
able in cold water as compared to hot water.

10. Define the following terms with a suitable example of each : [2]

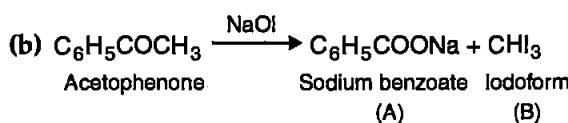
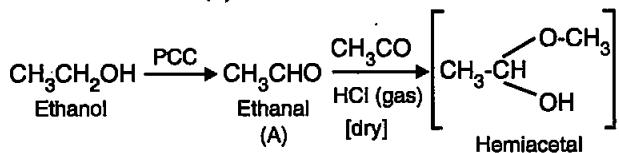
(a) Polydentate ligand  
(b) Homoleptic complex  
OR

Using IUPAC norms, write the formulae for the following complexes :

(a) Potassium tri (oxalato) chromate (III)  
(b) Hexaaquamanganese (II) sulphate.


**Answer :** (a) Polydentate ligands : Ligands with several donor atoms are called polydentate ligands. These can bond with metal ion in a complex with the different donor atoms present in them. Example :  $\text{N}(\text{CH}_2\text{CH}_2\text{NH}_2)_3$ .

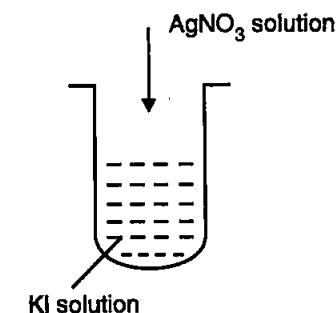
(b) Homoleptic complex : Complexes in which a metal atom is bound to only one kind of donor groups, e.g.,  $[\text{Co}(\text{NH}_3)_6]^{2+}$  are known as homoleptic complex.



OR

(a)  $\text{K}_3[\text{Cr}(\text{C}_2\text{O}_4)_3]$   
(b)  $[\text{Mn}(\text{H}_2\text{O})_6]\text{SO}_4$

12. Write structures of main compounds A and B in each of the following reactions : [2]




**Answer : (a)**



### SECTION-C

14. (a) Write the dispersed phase and dispersion medium of butter.  
(b) Why does physisorption decrease with increase in temperature ?  
(c) A colloidal sol is prepared by the method given in the figure. What is the charge on  $\text{AgI}$

colloidal particles formed in the test tube ?  
How is this sol represented ? [3]



**Answer :** (a) Butter is an example of 'Gel' type of colloid. Here the dispersed phase is liquid and dispersion medium is solid.

(b) Physisorption occurs because of physical attractive forces, like van der Waals forces between molecules of adsorbate and adsorbent, hence that can be reversed on application of bigger forces. Hence, when temperature is increased, the movement of adsorbed molecules increases, resulting in disturbed attractive forces, detachment of adsorbed molecules from adsorbent surface hence physisorption decreases.

(c) When  $\text{AgNO}_3$  solution is added to  $\text{KI}$ , silver iodide,  $\text{AgI}$ , is precipitated. The precipitated silver iodide adsorbs iodide ions from dispersion medium and negatively charged colloidal sol results. It can be shown as  $\text{AgI}/\text{I}^-$  (negatively charged).

17. Write the principle of the following :

(a) Hydraulic washing

(b) Chromatography

(c) Froth-floatation process [3]

**Answer :** (a) **Hydraulic washing** : This method of concentration of ores is based on the differences in gravities of the ore and the gangue particles. It is a type of gravity separation. An upward stream of running water is used to wash the powdered ore. The lighter gangue particles are washed away and the heavier ores are left behind.

(b) **Chromatography** : Chromatography is a physical method of separation of a mixture in which the components to be separated are distributed between two phases, stationary and mobile phase. The stationary phase may be a solid or a liquid supported on a solid or a gel. The mobile phase may be either a liquid or a gas.

(c) **Froth floatation process** : Froth floatation is a physicochemical method of concentrating fine minerals. This process utilizes the differ-

ence in surface properties of valuable mineral and gangue (impurity) particles. For example, removal of gangue from sulphide ores.

18. Give reasons for the following :

(a) Transition metals have high enthalpies of atomization.

(b) Manganese has lower melting point even though it has a higher number of unpaired electrons for bonding.

(c)  $\text{Ce}^{4+}$  is a strong oxidising agent. [3]

Answer : (a) Transition element have high effective nuclear charge and a large number of valence electrons  $((n-1) d$  electrons). So, as a result of greater number of electrons participating, very strong metallic bonds are formed. As a result of the strong inter-atomic metallic bonding, the transition metals have high enthalpies of atomization.

(b) Manganese has lower melting point even though it has a higher number of unpaired electrons for bonding. Melting point depends on the intermolecular or interatomic forces. Stronger the forces, higher the melting point. In Mn there is half filled  $3d$  sub-shell ( $3d^5$  configuration) which makes it stable and hence, it does not make additional covalent bonds with nearby atoms hence, it has less melting point.

(c)  $\text{Ce}^{4+}$  is a strong oxidising agent because  $\text{Ce}^{4+}$  oxidizes others and itself gets reduced to the common and preferred  $3+$  oxidation state of lanthanoid elements.

19. Write the structures of monomers used for getting the following polymers :

(a) Novolac

(b) Neoprene

(c) Buna-S

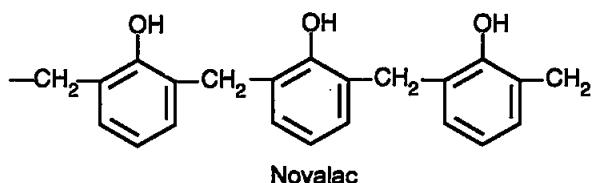
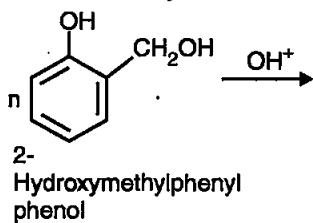
[3]

OR

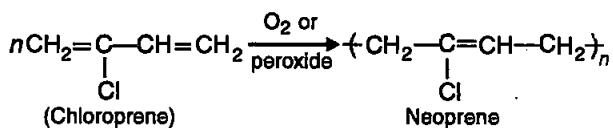
(a) Write on example each of

(i) Cross-linked polymer

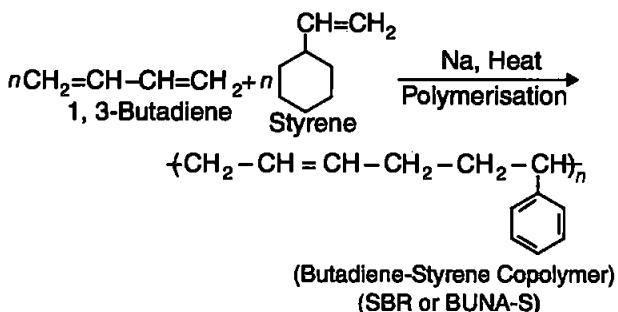
(ii) Natural polymer



(b) Arrange the following in the increasing order of their intermolecular forces :

Terylene, Buna-N, Polystyrene

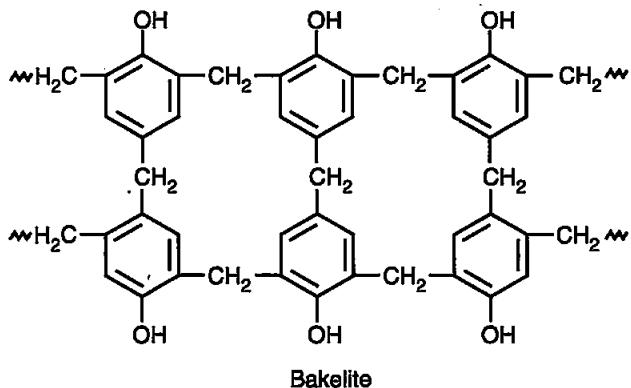

(c) Define biodegradable polymers with an example.

Answer :

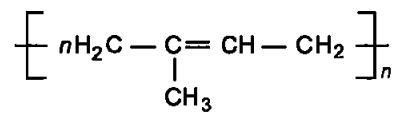
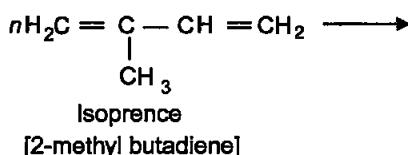

(a) Novolac is polymer of 2-hydroxymethyl phenol which is obtained by reaction of phenol and formaldehyde.



(b) Neoprene is polymer of chloroprene or 2-chloro-1,3-butadiene—




(c) Buna-S is a polymer of 1, 3-Butadiene and Styrene monomers.


OR

(a) (i) Bakelite is an example of cross-linked polymer—

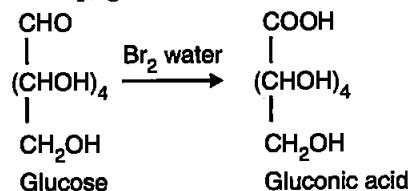


(ii) Rubber is an example of natural polymer—



Natural rubber  
[Poly Isoprene]

(b) Increasing order of their molecular forces :


Buna-N < Polystyrene < Terylene

(c) **Biodegradable polymer** : These are synthetic polymers designed so as to contain functional groups similar to ones present in biopolymers. These are thus easily degraded by environmental degradation process hence, known as Biodegradable polymers.

Example : Poly  $\beta$ -hydroxybutyrate-co- $\beta$ -hydroxy valerate (PHBV).

23. (a) Write the product when D-glucose reacts with  $\text{Br}_2$  (aq). [3]

Answer : (a) When D-glucose reacts with Bromine (aq.) gluconic acid is formed.



••

## Chemistry 2019 (Delhi)

SET I

Time allowed : 3 hours

Maximum marks : 70

### SECTION-A

1. Out of  $\text{NaCl}$  and  $\text{AgCl}$ , which one shows Frenkel defect and why ? \*\* [1]

2. Arrange the following in increasing order of boiling points :



Answer : Increasing order of boiling point would be :



3. Why are medicines more effective in colloidal state ? [1]

OR

What is difference between an emulsion and a gel ?

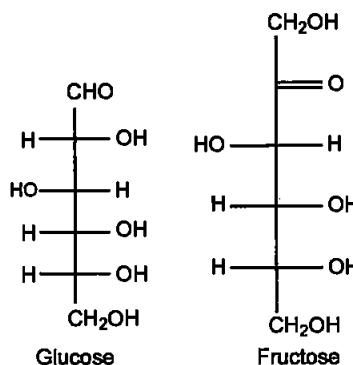
Answer : Medicines are effective in colloidal state because in colloidal state they have large surface area and are easily assimilated in body.

OR

Emulsions are the colloids made up of liquids dispersed in liquid dispersion medium whereas gels are liquids dispersed in solid dispersion medium. For example : milk is an emulsion whereas butter is a gel.

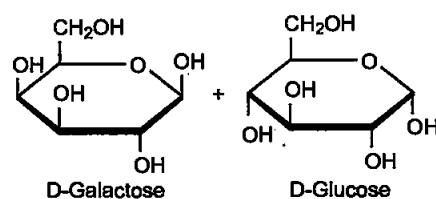
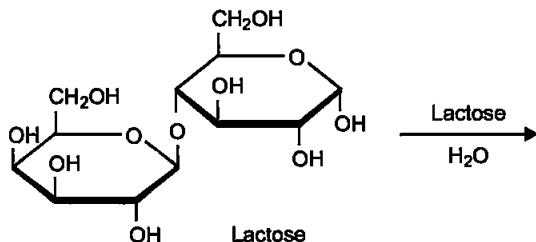
4. Define ambidient nucleophile with an example. [1]

Answer : Ambidient nucleophiles are the ones which can attack through two different atoms present in the same nucleophilic species, such as  $\text{NO}_2^-$ . This can attack the electrophilic center either through nitrogen or the oxygen.


5. What is the basic structural difference between glucose and fructose ? [1]

\*\* Answer is not given due to change in present syllabus.

### OR



Write the products obtained after hydrolysis of lactose.

Answer : Both glucose and fructose have the molecular formula  $\text{C}_6\text{H}_{12}\text{O}_6$  but Glucose has an aldehydic functional group at C-1 (in its open chain structure) and Fructose has a ketonic functional group at C-2. Glucose is an aldohexose whereas fructose is a ketohexose.



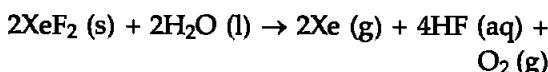
### OR

The products obtained after hydrolysis of lactose are  $\beta$ -D-glucose and  $\beta$ -D-galactose.



**SECTION-B**

6. Write balanced chemical equations for the following processes :


(i)  $\text{XeF}_2$  undergoes hydrolysis.  
(ii)  $\text{MnO}_2$  is heated with conc. HCl. [2]

OR

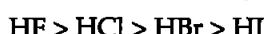
Arrange the following in order of property indicated for each set :

(i)  $\text{H}_2\text{O}$ ,  $\text{H}_2\text{S}$ ,  $\text{H}_2\text{Se}$ ,  $\text{H}_2\text{Te}$  – increasing acidic character  
(ii) HF, HCl, HBr, HI –decreasing bond enthalpy

Answer : (i)  $\text{XeF}_2$  undergoes hydrolysis to give Xe, HF and  $\text{O}_2$



(ii)  $\text{MnO}_2$  is heated with conc. HCl to give  $\text{MnCl}_2$ ,  $\text{Cl}_2$  and  $\text{H}_2\text{O}^-$




OR

(i) Increasing order of acidity–



(ii) Decreasing bond enthalpy–



7. State Raoult's law for a solution containing volatile components. Write two characteristics of the solution which obeys Raoult's law at all concentrations. [2]

Answer : Raoult's law states that for any solution the partial vapour pressure of each volatile component in the solution is directly proportional to its mole fraction.

The solutions which obey Raoult's law at all concentrations are known as ideal solutions. The two important properties of ideal solutions are as follows :

1. Enthalpy of mixing of the pure components to form the solution is zero

$$\Delta H_{\text{mix}} = 0$$

2. Volume of mixing of the pure components to form the solution is zero

$$\Delta V_{\text{mix}} = 0$$

8. For a reaction



the proposed mechanism is as given below :

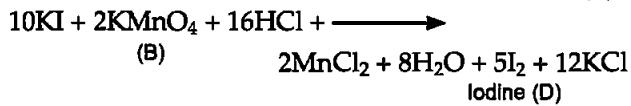
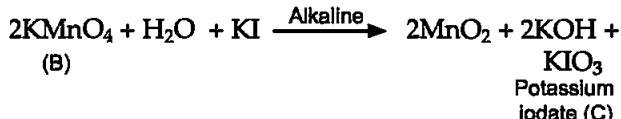
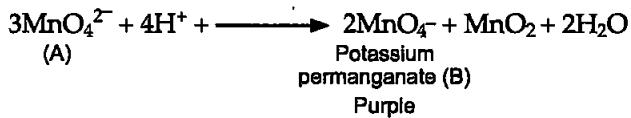
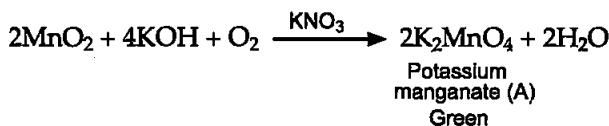
(1)  $\text{H}_2\text{O}_2 + \text{I}^- \rightarrow \text{H}_2\text{O} + \text{IO}^-$  (slow)  
(2)  $\text{H}_2\text{O}_2 + \text{IO}^- \rightarrow \text{H}_2\text{O} + \text{I}^- + \text{O}_2$  (fast)

(i) Write rate law for the reaction.

(ii) Write the overall order of reaction.

(iii) Out of steps (1) and (2), which one is rate determining step ? [2]

Answer : (i) Rate law of the reaction is given by :





$$\text{Rate} = -d[\text{H}_2\text{O}]/dt = k[\text{H}_2\text{O}_2][\text{I}^-]$$

(ii) As the rate law shows that the reaction is first order with  $\text{H}_2\text{O}_2$  and  $\text{I}^-$  both, hence the overall order of the reaction becomes  $1+1 = 2$ .

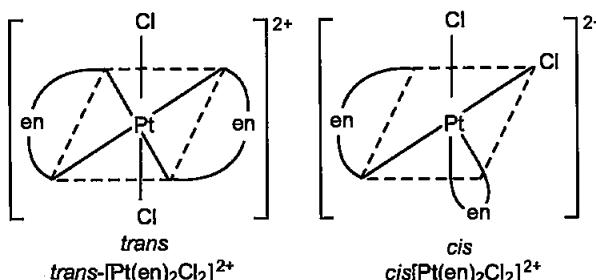
(iii) Step no. 1 is the slowest among two steps, hence this is the rate determining step.

9. When  $\text{MnO}_2$  is fused with KOH in the presence of  $\text{KNO}_3$  as an oxidizing agent, it gives a dark green compound (A). Compound (A) disproportionates in acidic solution to give purple compound (B). An alkaline solution of compound (B) oxidises KI to compound (C) whereas an acidified solution of compound (B) oxidises KI to (D). Identify (A), (B), (C) and (D). [2]

Answer : The reaction sequence can be written as –

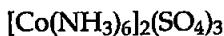


10. Write IUPAC name of the complex  $[\text{Pt}(\text{en})_2\text{Cl}_2]$ . Draw structures of geometrical isomers for this complex. [2]


OR

Using IUPAC norms write the formulae for the following :

(i) Hexaamminecobalt (III) sulphate


(ii) Potassium trioxalatochromate (III)

Answer : Dichlorido bis(ethane-1, 2-diamine platinum(II)




OR

(i) Hexaamminecobalt(III) sulphate



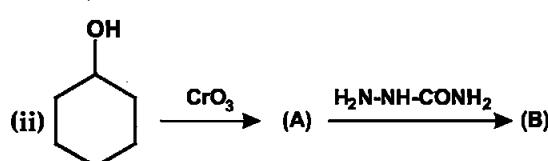
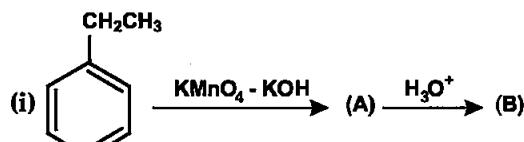
(ii) Potassium trioxalatochromate(III)



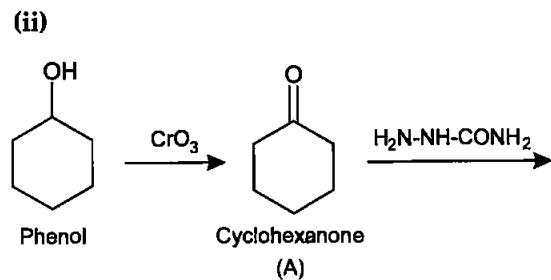
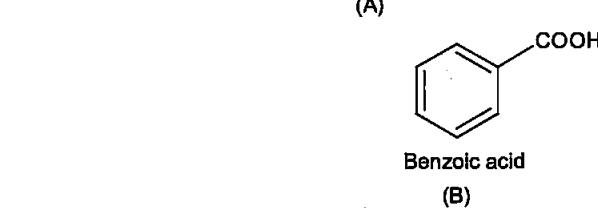
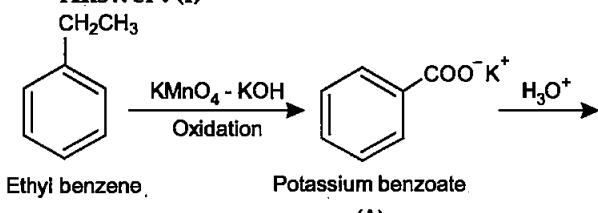
11. Out of  $[\text{CoF}_6]^{3-}$  and  $\{\text{Co}(\text{en})_3\}^{3+}$ , which one complex is :

(i) paramagnetic  
(ii) more stable  
(iii) inner orbital complex and  
(iv) high spin complex

(Atomic no. of Co = 27) [2]



Answer : (i)  $[\text{CoF}_6]^{3-}$  is paramagnetic as it has four unpaired electrons.

(ii)  $[\text{Co}(\text{en})_3]^{3+}$  is more stable.




(iii)  $[\text{Co}(\text{en})_3]^{3+}$  is inner orbital complex.

(iv)  $[\text{CoF}_6]^{3-}$  is high spin complex.

12. Write structures of compound A and B in each of the following reactions : [2]



Answer : (i)



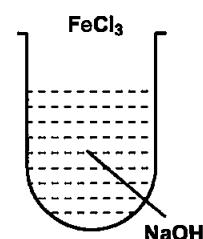
## SECTION-C

13. The decomposition of  $\text{NH}_3$  on platinum surface is surface is zero order reaction. If rate constant (k) is  $4 \times 10^{-3} \text{ Ms}^{-1}$ , how long will it take to reduce the initial concentration of  $\text{NH}_3$  from 0.1 M to 0.064 M. [3]

Answer : Rate law for a zero order reaction can be given as—

$$k = [\text{R}]^0 - [\text{R}] / t$$

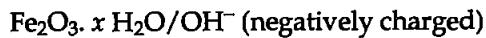
Substituting the given values—


$$4 \times 10^{-3} \text{ Ms}^{-1} = (0.1 - 0.064) \text{ M} / t$$

$$t = 0.036 \text{ M} / 4 \times 10^{-3} \text{ Ms}^{-1}$$

$$= 9 \text{ s}$$

So, the time taken would be 9 seconds.


14. (i) What is the role of activated charcoal in gas mask ?  
(ii) A colloidal sol is prepared by the given method in figure. What is the charge on hydrated ferric oxide colloidal particles formed in the test tube ? How is the sol represented ? [3]



(iii) How does chemisorption vary with temperature ?

Answer : (i) Activated charcoal present in gas mask adsorbs the harmful suffocating gases which surround the user and protects them from the particulate matter and ashes present in coal mines.

(ii) In the given method,  $\text{FeCl}_3$  is being added to the  $\text{NaOH}$  solution to give a sol of hydrated ferric oxide,  $\text{Fe}_2\text{O}_3 \cdot x\text{H}_2\text{O}$ . The sol formed preferentially adsorbs the negatively charged  $\text{OH}^-$  present in the solution and hence acquire a negative charge on sol particles. The negatively charged sol formed can be represented as



(iii) Chemisorption increases with temperature upto a certain extent as then after it starts decreasing, chemisorption occurs due to a chemical reaction between adsorbate and adsorbent, and chemical reactions increase with increase in temperature.

15. An element crystallizes in fcc lattice and with a cell edge of 300 pm. The density of the element is  $10.8 \text{ g cm}^{-3}$ . Calculate the number of atoms in 108 g of the element.\*\* [3]

16. A 4% solution (w/w) of sucrose ( $M = 342 \text{ g mol}^{-1}$ ) in water has a freezing point of 271.15 K. Calculate the freezing point of 5% glucose ( $M = 180 \text{ g mol}^{-1}$ ) in water. (Given : Freezing point of pure water = 273.15 K) [3]

Answer : Depression in freezing point can be shown by the given formula—

$$\Delta T_f = k_f m$$

The difference in freezing point,

$$\Delta T_f = 273.15 - 271.15 = 2 \text{ K}$$

and  $m = \frac{(w_2 \times 1000)}{(m_2 \times w_1)}$

For 4% sucrose solution in water—

$$2K = \frac{k_f \times 4 \times 1000}{342 \times 96}$$

$$k_f = 16.42 \text{ K kg/mol}$$

Now for 5% glucose solution—

$$w_2 = 5 \text{ g}; m_2 = 180 \text{ g mol}^{-1}; w_1 = 100 - 5 \text{ g} = 95 \text{ g}$$

$$273.15 - T_{f\text{glucose}} = \frac{16.42 \times 5 \times 1000}{180 \times 95}$$

$$273.15 - T_{f\text{glucose}} = 1.877$$

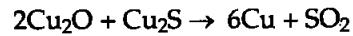
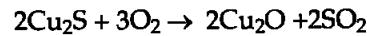
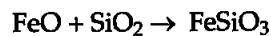
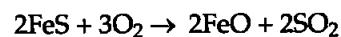
$$T_{f\text{glucose}} = 273.15 - 4.8$$

$$T_{f\text{glucose}} = 268.35$$

So, freezing point of 5% solution of glucose is 268.35 K.

17. (a) Name the method of refining which is  
 (i) used to obtain semiconductor of high purity.  
 (ii) used to obtain low boiling metal.  
 (b) Write chemical reactions taking place in the extraction of copper from  $\text{Cu}_2\text{S}$ . [3]

\*\* Answer is not given due to change in present syllabus.





Answer : (a) (i) Zone refining is being used for production of semiconductors like germanium, silicon, boron, gallium etc. of high purity.

(ii) Distillation method is used to obtain low boiling metals such as zinc and mercury.

(b) Chemical reactions involved in extraction of Cu from  $\text{Cu}_2\text{S}$  are :

$\text{Cu}_2\text{S}$  ore is heated in a reverberatory furnace after mixing with silica. In the furnace, iron oxide 'slags of' as iron silicate and copper is produced in the form of copper matte. This contains  $\text{Cu}_2\text{S}$  and  $\text{FeS}$ .

The reactions undergo as given below.



18. Give reasons for the following :

(i) Transition elements and their compounds act as catalysts.

(ii)  $E^\circ$  value for  $(\text{Mn}^{2+} / \text{Mn})$  is negative whereas for  $(\text{Cu}^{2+} / \text{Cu})$  is positive.

(iii) Actinoids show irregularities in their electronic configuration. [3]

Answer : (i) Transition elements and their compounds act as catalyst due to their ability to adopt multiple oxidation states and to form complexes.

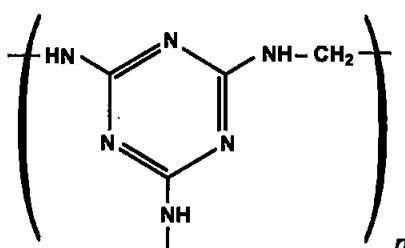
(ii)  $\text{Mn}^{2+}$  has  $d^5$  configuration (stable half-filled configuration) and it prefers to stay in +2 oxidation state, so,  $E^\circ$  value for  $\text{Mn}^{2+} / \text{Mn}$  is negative. Whereas, the high energy to transform  $\text{Cu(s)}$  to  $\text{Cu}^{2+} \text{ (aq)}$  is not balanced by its hydration enthalpy, hence  $\text{Cu}^{2+}$  is not favored over  $\text{Cu}^0$  state and it has positive  $E^\circ$  value.

(iii) Actinoids show irregularities in their oxidation states due to extra stability of empty, half filled and fully filled  $f$  subshells.

19. Write the structures of monomers used for getting the following polymers :

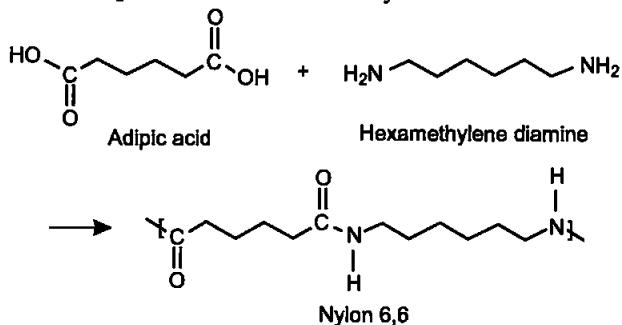
(i) Nylon-6,6

(ii) Glyptal

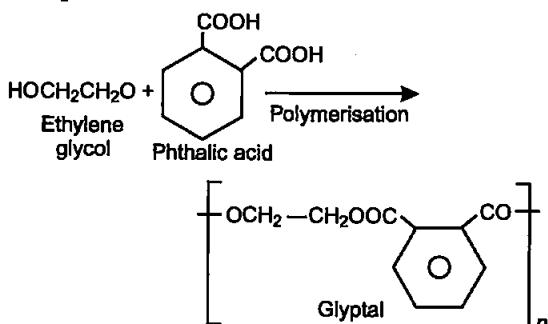

(iii) Buna-S [3]

OR

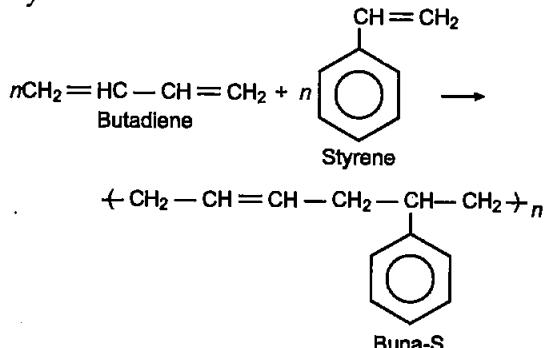



(i) Is  $\left[ \text{CH}_2 - \text{CH} \right]_n$  a homopolymer or copolymer ? Give reason.

(ii) Write the monomers of the following polymer :




(iii) What is the role of Sulphur in vulcanization of rubber ?

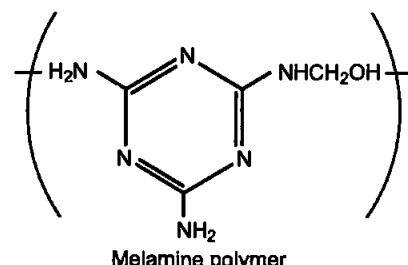
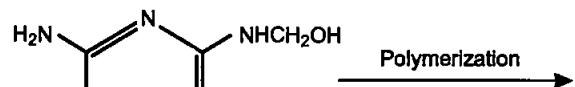
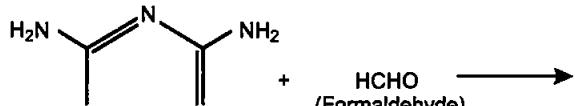

Answer : (i) Monomers of Nylon-6,6 are adipic acid and hexamethylene diamine.



(ii) Monomers of glyptal are ethylene glycol and phthalic acid.



(iii) Monomers of Buna-S are Butadiene and Styrene.


OR

(i)  $\{CH_2-CH_2(CH_3)\}_n$  is a homopolymer and the monomer from which it is obtained is  $CH_2=CH(CH_3)$ .

(ii) The given polymer is melamine polymer and the monomers are Melamine and

Formaldehyde.



Melamine polymer

(iii) Natural rubber becomes soft at high temperatures. In the vulcanisation process, sulphur forms cross links at the reactive sites of double bonds in rubber monomers and thus the rubber gets stiffened.

20. (i) What type of drug is used in sleeping pills ?

(ii) What type of detergents are used in toothpastes ?

(iii) Why the use of alitame as artificial sweetener is not recommended ? [3]

OR

Define the following terms with a suitable example in each :

(i) Broad-spectrum antibiotics

(ii) Disinfectants

(iii) Cationic detergents

Answer : (i) Tranquillizers are used in sleeping pills.

(ii) Anionic detergents are used in toothpastes.

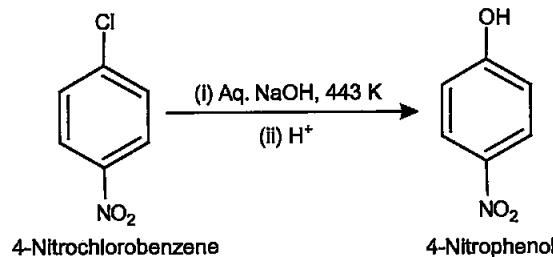
(iii) It is difficult to control the sweetness of food by using alitame hence its use is not recommended.

OR

(i) Broad spectrum antibiotics : Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria are said

to be broad spectrum antibiotics. Ampicillin is an example.

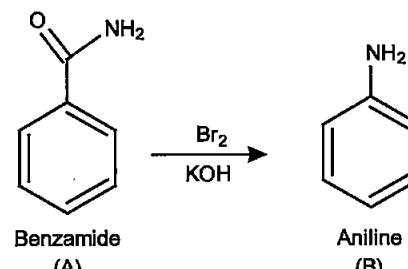
(ii) **Disinfectants** : These are chemicals which are applied to inanimate objects such as floors, drainage system, instruments etc. Example is 1% solution of phenol.


(iii) **Cationic detergents** : These are quaternary ammonium salts of amines with acetates, chlorides or bromides as anions. Example is Cetyltrimethyl ammonium bromide.

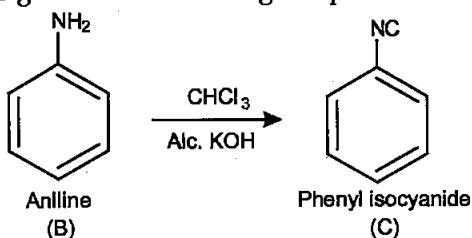
21. (i) Out of  $(\text{CH}_3)_3\text{C-Br}$  and  $(\text{CH}_3)_3\text{C-I}$ , which one is more reactive towards  $\text{S}_{\text{N}}1$  and why ?  
 (ii) Write the product formed when *p*-nitrochlorobenzene is heated with aqueous  $\text{NaOH}$  at 443 K followed by acidification.

(iii) Why *dextro* and *laevo* – rotatory isomers of Butan-2-ol are difficult to separate by fractional distillation ? [3]

**Answer :** (i)  $(\text{CH}_3)_3\text{C-I}$  is more reactive than  $(\text{CH}_3)_3\text{C-Br}$  towards  $\text{S}_{\text{N}}1$  reaction because, C-I bond being weaker than C-Br bond (due to larger size of  $\text{I}^-$  compared to  $\text{Br}^-$ ) forms the tertiary carbocation easily.


(ii) 4-Nitrophenol is formed as product when *p*-nitrochlorobenzene is heated with  $\text{NaOH}$  at 443 K and acidified later.




(iii) *Dextro*- and *laevo*- rotatory isomers of Butan-2-ol are stereoisomers of each other and have same physical properties. As they have same boiling points, thus it is difficult to isolate them through fractional distillation.

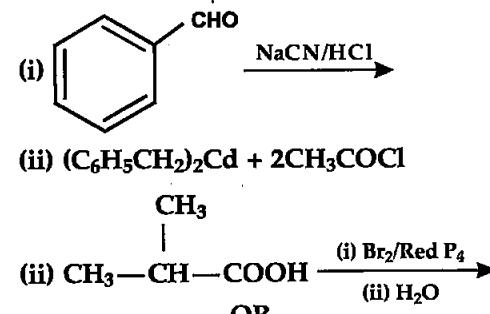
22. An aromatic compound 'A' on heating with  $\text{Br}_2$  and  $\text{KOH}$  forms a compound 'B' of molecular formula  $\text{C}_6\text{H}_7\text{N}$  which on reacting with  $\text{CHCl}_3$  and alcoholic  $\text{KOH}$  produces a foul smelling compound 'C'. Write the structures and IUPAC names of compounds A, B and C. [3]

**Answer :** As the chemical combination  $\text{Br}_2$  and  $\text{KOH}$  are used for Hofmann Bromamide reaction where an amide is reduced to amine, the compound B,  $\text{C}_6\text{H}_7\text{N}$  seems to be Aniline. The reaction can be suggested as follows :



Then aniline undergoes carbylamine reaction to give the foul smelling compound C.




IUPAC names are as follows :

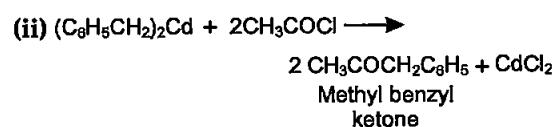
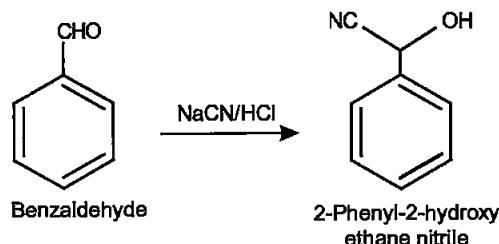
Compound A – Benzamide

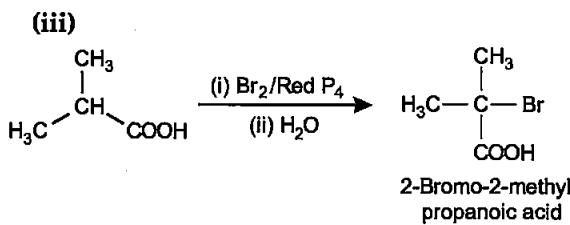
Compound B – Aniline or Benzenamine

Compound C – Isocyanobenzene or phenylisocyanide.

23. Complete the following reactions : [3]

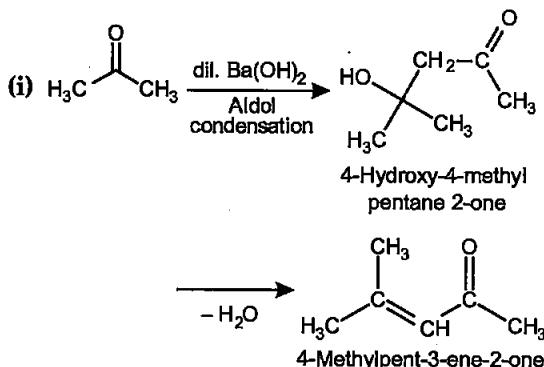




OR


Write chemical equations for the following reactions :

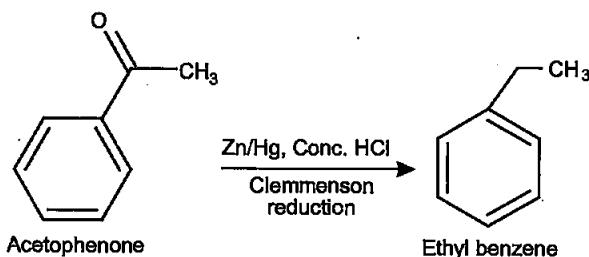
(i) Propanone is treated with dilute  $\text{Ba}(\text{OH})_2$ .  
 (ii) Acetophenone is treated with  $\text{Zn}(\text{Hg})/\text{conc. HCl}$ .

(iii) Benzoyl chloride is hydrogenated in presence of  $\text{Pd/BaSO}_4$ .


**Answer :** (i)





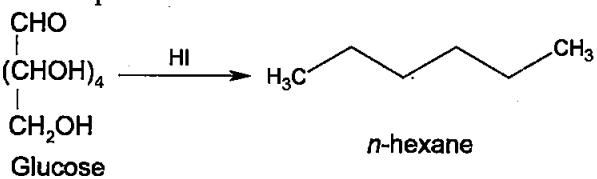

| S.No. | Amylose                             | Amylopectin                         |
|-------|-------------------------------------|-------------------------------------|
| 1.    | Water soluble.                      | Water insoluble.                    |
| 2.    | Constitutes about 15-20% of starch. | Constitutes about 80-85% of starch. |
| 3.    | It has un-branched chain.           | It has branched chain.              |

## (ii) Difference between Peptide linkage and Glycosidic linkage —

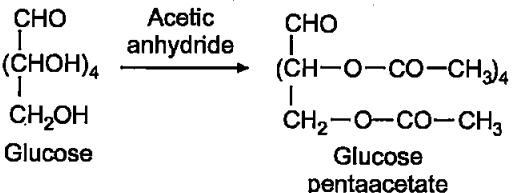


| S.No. | Peptide linkage                                                                                                         | Glycosidic linkage                                                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1.    | It is an amide formed between $-\text{COOH}$ group of one amine and $-\text{NH}_2$ group of second amino acid molecule. | It is an oxide linkage, that is two monosaccharides are joined through an oxygen atom. |
| 2.    | It is found in protein molecules.                                                                                       | It is found in carbohydrate molecules.                                                 |

### (iii) Difference between Fibrous proteins and Globular Proteins —




| S.No. | Fibrous protein                                                                                  | Globular protein                                                      |
|-------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 1.    | In these polypeptide chains run parallel and are held together by hydrogen and disulphide bonds. | In these chains of polypeptide coil around to give a spherical shape. |
| 2.    | Usually insoluble in water. Examples are Keratin and myosin.                                     | Usually soluble in water. Examples are albumin and insulin.           |

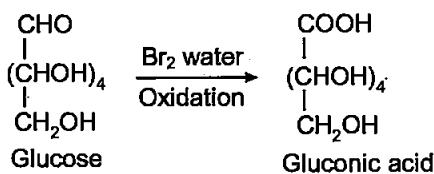

OR

(i) Open chain structure of Glucose is straight chain can be shown as follows—

On prolonged heating with HI, it forms *n*-hexane, this shows that glucose has straight open chain structure.



(ii) On acetylation with acetic anhydride, glucose gives glucose pentaacetate, this shows that glucose has five alcoholic groups.




**OR**

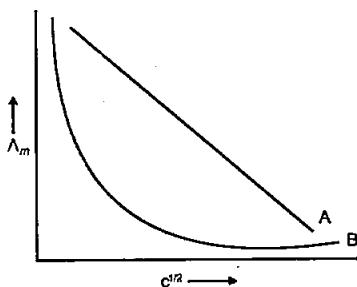
- (i) Straight chain
- (ii) Five alcohol groups
- (iii) Aldehyde as carbonyl group

**Answer : (i) Difference between Amylose and Amylopectin —**

(iii) Glucose gets oxidized to six carbon carboxylic acid (Gluconic acid) on reaction with a mild oxidising agent like bromine water. This indicates that the carbonyl group is present as an aldehydic group.



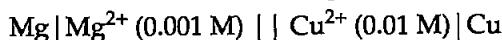
### SECTION-D


25.  $E_{\text{cell}}^{\circ}$  for the given redox reaction is 2.71 V  
 $\text{Mg}_{(\text{s})} + \text{Cu}^{2+} (0.01 \text{ M}) \rightarrow \text{Mg}^{2+} (0.001 \text{ M}) + \text{Cu}_{(\text{s})}$   
 Calculate  $E_{\text{cell}}$  for the reaction. Write the direction of flow of current when an external opposite potential applied is  
 (i) less than 2.71 V and  
 (ii) greater than 2.71 V. [5]

OR

(a) A steady current of 2 amperes was passed through two electrolytic cells X and Y connected in series containing electrolytes  $\text{FeSO}_4$  and  $\text{ZnSO}_4$  until 2.8g of Fe deposited at the cathode of cell X. How long did the current flow ? Calculate the mass of Zn deposited at the cathode of cell Y.

(Molar mass : Fe = 56 g  $\text{mol}^{-1}$ , Zn = 65.3 g  $\text{mol}^{-1}$ , 1F = 96500 C  $\text{mol}^{-1}$ )


(b) In the plot of molar conductivity ( $\Lambda_m$ ) vs square root of concentration ( $c^{1/2}$ ) following curves are obtained for two electrolytes A and B :



Answer the following :

(i) Predict the nature of electrolytes A and B.  
 (ii) What happens on extrapolation of  $\Lambda_m$  to concentration approaching zero for electrolytes A and B ?

Answer : The cell can be represented as :



$$E_{\text{cell}} = \frac{E_{\text{cell}}^{\circ} - RT}{2F \ln \left( \frac{[\text{Mg}^{2+}]}{[\text{Cu}^{2+}]} \right)}$$

Putting the given values,

$$\begin{aligned}
 E_{\text{cell}} &= \frac{E_{\text{cell}}^{\circ} - RT}{2F \ln \left( \frac{[\text{Mg}^{2+}]}{[\text{Cu}^{2+}]} \right)} \\
 &= 2.71 - \left( \frac{0.059}{2} \right) \log \left( \frac{0.001}{0.01} \right) \\
 &= 2.68 - (-1) \\
 &= 3.68 \text{ V}
 \end{aligned}$$

(i) When external opposite potential is less than 2.71 V then electron flows from Mg rod to Cu rod hence current flows from Cu to Mg.

(ii) When external opposite potential is greater than 2.71 V then electron flows from Cu rod to Mg rod and current flows from Mg to Cu.

OR

(a) Charge = Current  $\times$  Time

Now, in the given experiment, 2.8 g of iron was deposited or

$$\frac{2.8}{56} = 0.05 \text{ moles of iron were deposited.}$$

Now, as it is a 2 electron transfer process :  
 1 mol of iron is deposited by  $2 \times 96500 \text{ C}$  of charge

$$\begin{aligned}
 \text{Hence, } 0.05 \text{ mol of iron will need } 0.05 \times 2 \times \\
 96500 \text{ C of charge} \\
 = 9650 \text{ C}
 \end{aligned}$$

So,

$$9650 \text{ C} = 2 \text{ A} \times t$$

$$\text{Time} = 4825 \text{ seconds} = 80.41 \text{ minutes}$$

Similarly,

So, same amount of charge will flow to deposit Zn as well, keeping that in mind

$2 \times 96500 \text{ C}$  of charge can deposit 1 mol of Zn  
 Hence, 9650 C of charge would deposit

$$= \left( \frac{1}{2} \times 96500 \text{ C} \right) \times 9650 = 0.05 \text{ mol}$$

Weight of Zinc deposited

$$= 0.05 \text{ mol} \times 65.3 \text{ g mol}^{-1} = 3.26 \text{ g}$$

(b) (i) The electrolyte A is a strong electrolyte, and the electrolyte B is a weak electrolyte.

(ii) On extrapolation for electrolyte A limiting value of conductance is obtained that is conductance at zero concentration or infinite dilution.

The curve obtained for a strong electrolyte shows that there is a small decrease in molar conductivity with increase in concentration. In other words, the molar conductivity is increased only slightly on dilution (for observing dilution effects, go towards zero on X-axis). A strong electrolyte is completely

dissociated in solution and thus, furnishes all ions for conductance. However, at higher concentrations, the dissociated ions are close to each other and thus, the inter-ionic attractions are greater. These forces retard the motion of the ions and thus, conductivity is low. With decrease in concentration (dilution), the ions move away from each other thereby feeling less attractive forces from the counter ions. This results in an increase in molar conductivity with dilution. The molar conductivity approaches a maximum limiting value at infinite dilution designated as  $\Lambda_m^0$ .

For electrolyte B :

The curve obtained for B shows that there is a large increase in the value of molar conductivity with dilution, especially near infinite dilution. This is because as the solution of a weak electrolyte is diluted, its ionization is increased. This results in more number of ions in solution and thus, there is an increase in molar conductivity. However, the conductance of a weak electrolyte never approaches a limiting value. Or in other words it is not possible to find conductance at infinite dilution (zero concentration).

26. (a) How do you convert the following :

(i) Phenol to Anisole  
(ii) Ethanol to Propan-2-ol

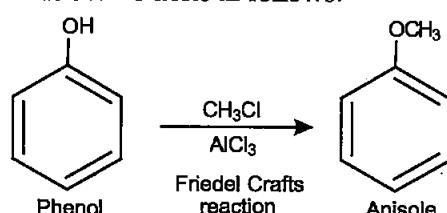
(b) Write mechanism of the following reaction :



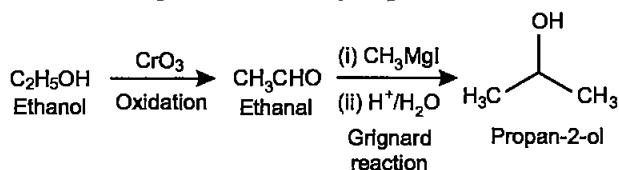
(c) Why phenol undergoes electrophilic substitution more easily than benzene ? [5]

OR

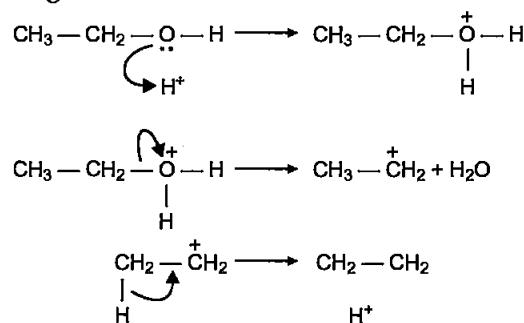
(a) Account for the following :


(i) *o*-nitrophenol is more steam volatile than *p*-nitrophenol.

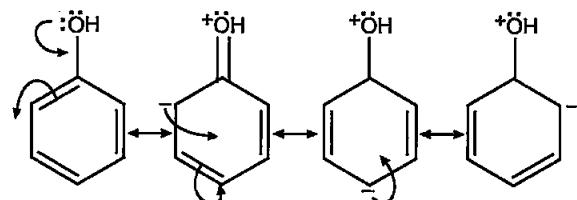
(ii) *t*-butyl chloride on heating with sodium methoxide gives 2-methylpropene instead of *t*-butyl methylether.


(b) Write the reaction involved in the following :

(i) Riemer Tiemann reaction  
(ii) Friedal Crafts Alkylation of Phenol  
(c) Give simple chemical test to distinguish between Ethanol and Phenol.

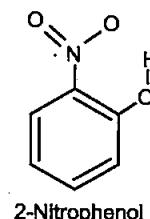

**Answer :** (a) (i) Conversion of phenol to anisole can be done as follows.

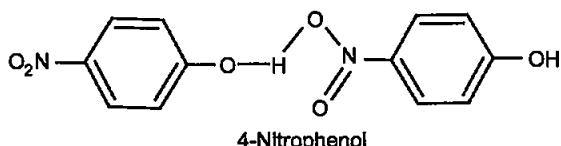



(ii) Ethanol can be converted to propan-2-ol through the following sequence :

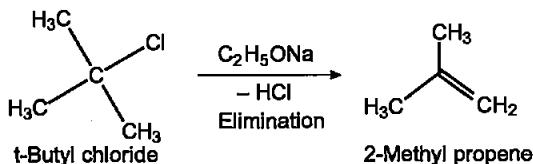


(b) The mechanism of dehydration of ethanol to give ethene can be written as follows :

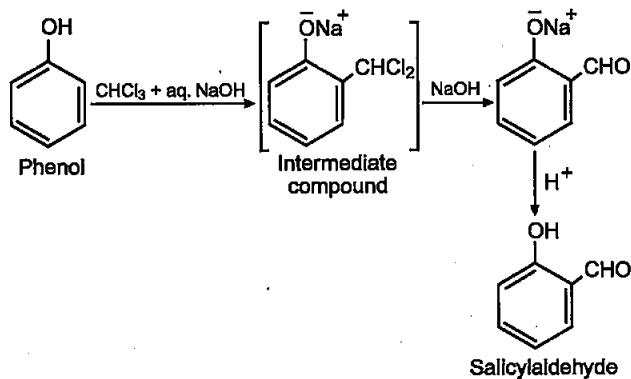




(c) The  $-\text{OH}$  group in phenol increases the electron density on the benzene ring hence electrophilic substitution reaction is more prominent in phenol compared to benzene. The lone pair of oxygen on phenolic-OH group takes part in the resonance and makes the ring electron rich, hence activating the ring for incoming electrophiles.

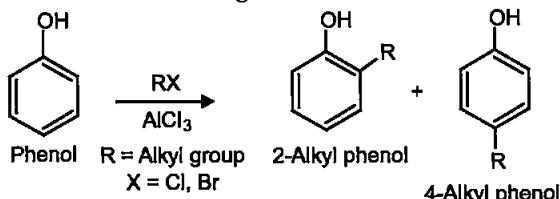



OR

(a) (i) This difference arises due to the difference in extent of association of molecules with each other. In *o*-nitrophenol the nitro and hydroxyl group present in same molecule forms a hydrogen bond (intra-molecular) and thus have least association with nearby molecules, whereas in *p*-nitrophenol the nitro and hydroxyl groups of adjacent molecules form hydrogen bonds (intermolecular) which result in long range association of molecules. Hence, large amount of energy is required to break the intermolecular hydrogen bonds hence, high boiling point than the 2-nitrophenol molecules.

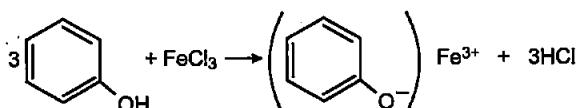






(ii) Sodium methoxide acts as strong base and extracts a proton from one of the methyl groups of *t*-butyl chloride giving rise to a primary carbanion which quickly loses Cl<sup>-</sup> to give a double bond, hence the product formed is 2-methyl propene.



(b) (i) Reimer-Tiemann reaction :




(ii) Friedal Crafts alkylation of phenol can be shown as following :



(c) Chemical test to distinguish between ethanol and phenol :

On adding neutral FeCl<sub>3</sub>, phenol gives a violet coloured solution but ethanol does not.



27. Give reasons for the following :

- Sulphur in vapour state shows paramagnetic behaviour.
- N-N bond is weaker than P—P bond.\*\*
- Ozone is thermodynamically less stable than oxygen.

\*\* Answer is not given due to change in present syllabus.

(b) Write the name of gas released when Cu is added to  
 (i) dilute HNO<sub>3</sub> and  
 (ii) conc. HNO<sub>3</sub> [5]

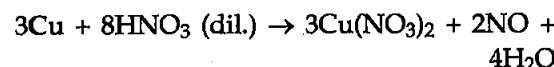
OR

(a) (i) Write the disproportionation reaction of H<sub>3</sub>PO<sub>3</sub>.\*\*

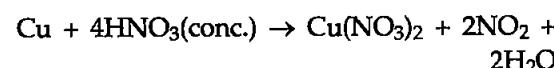
(ii) Draw the structure of XeF<sub>4</sub>.

(b) Account for the following :

(i) Although Fluorine has less negative electron gain enthalpy yet F<sub>2</sub> is strong oxidizing agent.

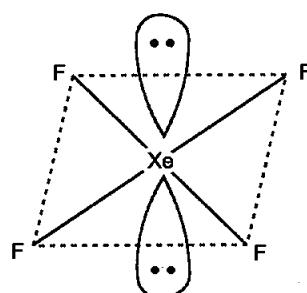

(ii) Acidic character decreases from N<sub>2</sub>O<sub>3</sub> to Bi<sub>2</sub>O<sub>3</sub> in group 15.\*\*

(c) Write a chemical reaction to test sulphur dioxide gas. Write chemical equation involved.


Answer : (a) (i) In vapour phase sulphur partly exists as S<sub>2</sub> molecule and S<sub>2</sub> molecule like O<sub>2</sub> molecule has two unpaired electrons in anti-bonding  $\pi$  orbital, hence it shows paramagnetic behaviour.

(iii) Ozone (O<sub>3</sub>) is thermodynamically less stable than dioxygen (O<sub>2</sub>) because decomposition of ozone into dioxygen results in the liberation of heat ( $\Delta H$  is negative) and increase in entropy ( $\Delta S$  is positive). These two effects reinforce each other.

(b) (i) When Cu is added to dil. HNO<sub>3</sub> Nitrogen monoxide (NO) is released—

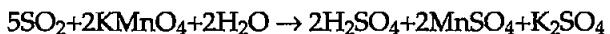



(ii) When Cu is added to conc. HNO<sub>3</sub> Nitrogen dioxide (NO<sub>2</sub>) is released :



OR

(a) (ii) Structure of XeF<sub>4</sub>




(b) (i) Although Fluorine has less electron gain enthalpy yet it is a strong oxidising agent due to its low enthalpy of dissociation of F—F

bond and high enthalpy of hydration of  $F^-$  ion.

(c) Sulphur dioxide behaves as a reducing agent when moist, this property is being used for its test in laboratory. It decolorizes the

purple coloured potassium permanganate(VII) solution :



Purple colour  
solution

light brown colour

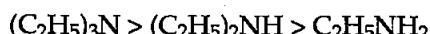
••

## Chemistry 2019 (Delhi)

**SET II**

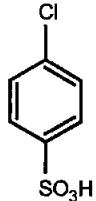
Time allowed : 3 hours

Maximum marks : 70


**Note :** Except for the following questions, all the remaining questions have been asked in previous set.

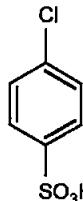
### SECTION-A

2. Arrange the following in increasing order of base strength in gas phase : [1]




Answer : In gas phase the basicity order will be –




3. Why conductivity of silicon increases on doping with phosphorus ?\*\* [1]

5. Write IUPAC name of the given compound :



[1]

Answer :



4-Chlorobenzene-1-sulphonic acid

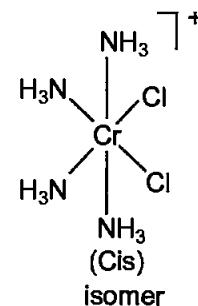
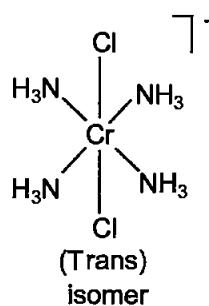
### SECTION-B

8. Write two differences between an ideal solution and a non-ideal solution. [2]

Answer : Differences between Ideal and non-ideal solutions –

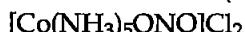
| S.No. | Ideal solution                                         | Non-ideal solution                                           |
|-------|--------------------------------------------------------|--------------------------------------------------------------|
| 1.    | Follows Raoult's law.                                  | Does not follow Raoult's law.                                |
| 2.    | $\Delta H_{\text{mix}} = 0, \Delta V_{\text{mix}} = 0$ | $\Delta H_{\text{mix}} \neq 0, \Delta V_{\text{mix}} \neq 0$ |

\*\* Answer is not given due to change in present syllabus.



10. Write IUPAC of the complex  $[\text{Cr}(\text{NH}_3)_4\text{Cl}_2]^+$ . Draw structures of geometrical isomers for this complex. [2]

OR

Using IUPAC norms write the formulae for the following :


(i) Pentamminenitrito-O-cobalt(III) chloride  
(ii) Potassium tetracyanidonickelate (II)

Answer : The IUPAC name for  $[\text{Cr}(\text{NH}_3)_4\text{Cl}_2]^+$  is tetraammine dichlorochromium(III) :



OR

(i) Pentamminenitritocobalt(III)chloride :



(ii) Potassium tetracyanidonickelate (II) :

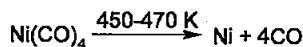
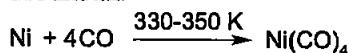


11. Out of  $[\text{CoF}_6]^{3-}$  and  $[\text{Co}(\text{C}_2\text{O}_4)]^{3-}$ , which one complex is :

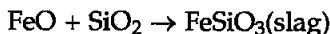
(i) diamagnetic  
(ii) more stable  
(iii) outer orbital complex and  
(iv) low spin complex ?  
(Atomic no. of Co = 27) [2]

Answer :  $[\text{Co}(\text{C}_2\text{O}_4)]^{3-}$  has  $d^2sp^3$  hybridisation (low spin complex) and  $[\text{CoF}_6]^{3-}$  has  $sp^3d^2$  hybridisation (high spin complex).

(i)  $[\text{Co}(\text{C}_2\text{O}_4)]^{3-}$  is diamagnetic  
(ii)  $[\text{Co}(\text{C}_2\text{O}_4)]^{3-}$  is more stable.  
(iii)  $[\text{CoF}_6]^{3-}$  is outer orbital complex  
(iv)  $[\text{Co}(\text{C}_2\text{O}_4)]^{3-}$  is low spin complex.



### SECTION-B

17. (i) Write the role of 'CO' in the purification of nickel.


(ii) What is the role of silica in the extraction of copper ?

(iii) What type of metals are generally extracted by electrolytic method ? [3]

**Answer :** (i) Role of CO in purification of Nickel : Mond process is the technique used to purify nickel. The impure nickel reacts with carbon monoxide at 50-60° C to form the gas nickel carbonyl, leaving the impurities as solids. Nickel carbonyl is subjected to higher temperature so that it is decomposed giving the pure metal.



(ii) Role of silica in extraction of Copper : The role of silica in the metallurgy of copper is to remove the iron oxide obtained during the process of roasting. If the sulphide ore of copper contains iron, then silica ( $\text{SiO}_2$ ) is added as flux before roasting.



(iii) Metals whose ions easily get reduced in solution or molten state are generally extracted by electrolytic method.

18. Give reasons for the following :

(i) Transition metals form alloys.

(ii)  $\text{Mn}_2\text{O}_3$  is basic whereas  $\text{Mn}_2\text{O}_7$  is acidic.

(iii)  $\text{Eu}^{2+}$  is a strong reducing agent. [3]

**Answer :** (i) Transition metal forms alloys because the atomic sizes of transition metals are very similar to each other. As the atomic sizes are very similar, one metal can replace the other metal from its lattice and form a solid solution. This solid solution is known as alloy.

(ii) In  $\text{Mn}_2\text{O}_3$  manganese has +3 oxidation state, it has lone pairs of electrons which can be donated (Lewis base), hence it is basic in nature. Whereas in  $\text{Mn}_2\text{O}_7$  manganese has +7 oxidation state. Higher oxidation states are short of electrons, meaning they can accept electrons and thus function as Lewis acids. So,  $\text{Mn}_2\text{O}_7$  is acidic.

(iii) Reducing agent is that which can reduce other species and itself gets oxidized.  $\text{Eu}^{2+}$  readily changes to the common +3 oxidation state shown by the lanthanides by losing one more electron. So,  $\text{Eu}^{2+}$  is regarded as a strong reducing agent.

20. (i) Why bithional is added in soap ?

(ii) Why magnesium hydroxide is a better antacid than sodium bicarbonate ?

(ii) Why soaps are biodegradable whereas detergents are non-biodegradable ? [3]

OR

Define the following terms with a suitable example in each :

(i) Antibiotics

(ii) Artificial sweeteners

(iii) Analgesics

**Answer :** (i) Bithional is added in soap to impart antiseptic properties to soap.

(ii) Sodium bicarbonate if taken in excess can make the stomach alkaline in turn stimulating more acid release, hence magnesium hydroxide is better antacid than sodium bicarbonate because being insoluble, it does not increase the pH above neutrality.

(iii) Soaps are sodium or potassium salts of long chain fatty acids whereas the hydrocarbon portion of synthetic detergents contain highly branched hydrocarbon chain which is not easy for the bacteria to degrade. Hence, soaps are biodegradable but synthetic detergents are not.

OR

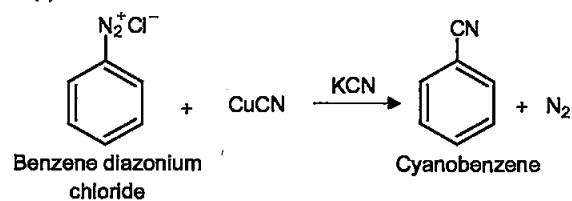
(i) **Antibiotics** : They are the compounds (produced by microorganisms or synthetically) which either inhibit the growth of bacteria or kill bacteria. Example : Penicillin.

(ii) **Artificial sweeteners** : They are the compounds which make the food sweet in taste without adding calories to the food. Example – Aspartame.

(iii) **Analgesics** : These are the compounds which reduce or abolish pain without causing impairment of consciousness, mental confusion or any other disturbances to central nervous system. They are of two types, Narcotic (Morphine) and non-narcotic (Example : Paracetamol).

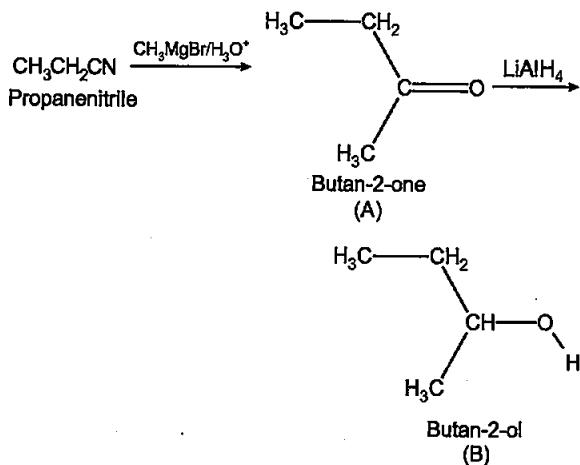
21. Write the structures of main products when benzene diazonium chloride reacts with the following reagents.

(i)  $\text{CuCN}$

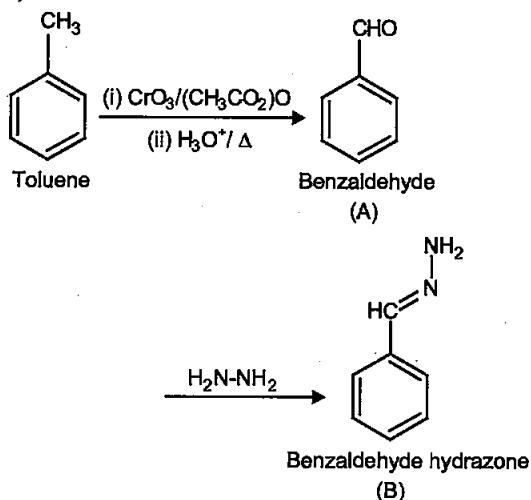

(ii)  $\text{CH}_3\text{CH}_2\text{OH}$

(iii)  $\text{KI}$  [3]

**Answer :**


The products will be as follows :

(i)





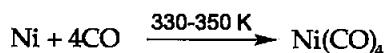

**Answer : (i)**



**(ii)**

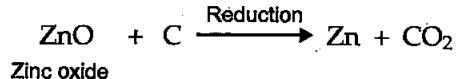
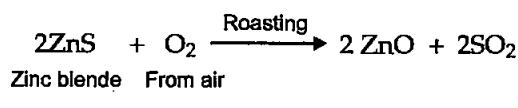


### SECTION-C

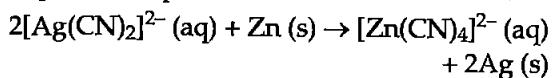

**17. How will you convert the following :**

(i) Impure nickel to pure nickel

(ii) Zinc blende to zinc metal



(ii)  $[\text{Ag}(\text{CN})_2]^-$  to Ag [3]

**Answer : (i)** Impure nickel can be converted to pure nickel by Mond's process. In this process, Nickel is heated in a stream of carbon monoxide forming a volatile complex, nickel tetracarbonyl




The carbonyl is subjected to higher temperature so that it is decomposed giving the pure metal.

(ii) Zinc can be obtained from zinc blende as follows :



(iii)  $[\text{Ag}(\text{CN})_2]^-$  can be converted into Ag by treating with zinc (a more electropositive element than silver). Hence, on treatment with zinc metal, Zn oxidizes to furnish  $\text{Zn}^{2+}$  ions, which go into solution replacing the  $\text{Ag}^+$  ions, which are in turn reduced to metallic silver and deposited in pure form.



**18. Give reasons for the following :**

(i) The transition metals generally form coloured compounds.

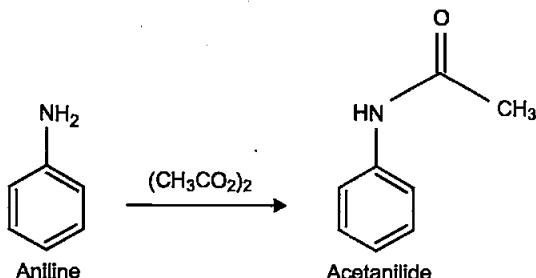
(ii)  $E^\circ$  value for  $(\text{Mn}^{3+}/\text{Mn}^{2+})$  is highly positive than that for  $(\text{Cr}^{3+}/\text{Cr}^{2+})$  couple.

(iii) The chemistry of actinoids elements is not so smooth as that of the lanthanoids. [3]

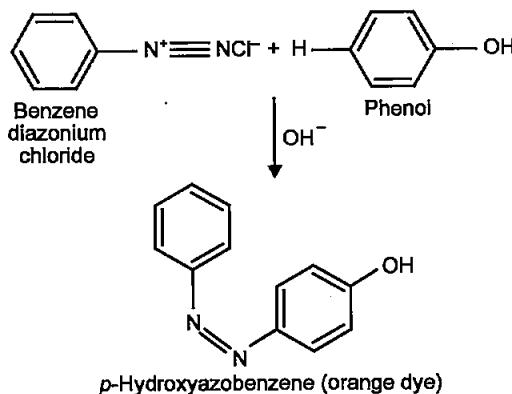
**Answer : (i)** Transition metals have partly filled  $d$ -orbitals. So, the single electrons available in  $d$ -orbitals absorb energy and go to higher unoccupied electronic energy levels. When they come back, they emit energy in visible range and hence impart colour.

(ii)  $E^\circ$  value for  $\text{Mn}^{3+}/\text{Mn}^{2+}$  is highly positive because  $\text{Mn}^{2+}$  has a stable  $d^5$  configuration and it is reluctant to lose one electron to achieve the 3+ state.  $\text{Cr}^{2+}$  has  $3d^4$  configuration and losing another electron to achieve  $3d^3$  configuration is not that difficult, hence the  $E^\circ$  value is not more positive compared to  $\text{Mn}^{3+}/\text{Mn}^{2+}$ .

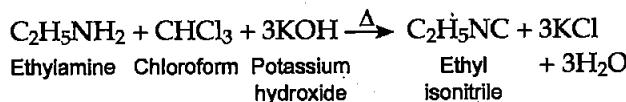
(iii) Chemistry of actinoid elements is not so smooth in view of their ability to exist in different oxidation states. Also, many of the actinoid elements are radioactive which makes the study of these elements difficult.


**22. Write equations of the following reactions :**

(i) Acetylation of aniline


(ii) Coupling reaction

(iii) Carbonyl amine reaction [3]


**Answer : (i) Acetylation of aniline :**



**(ii) Coupling reaction :** Benzene diazonium chloride reacts with other suitable aromatic compounds to give azo compounds. This reaction is known as coupling reaction.



(iii) **Carbylamine reaction** : Aliphatic and aromatic primary amines on heating with chloroform and ethanolic potassium hydroxide form isocyanides or carbylamines.



24. Define the following with a suitable example in each :

- Oligosaccharides
- Denaturation of protein
- Vitamins

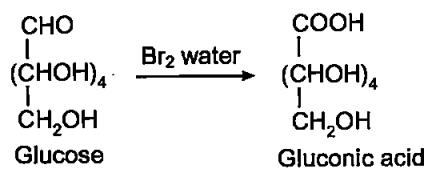
[3]

OR

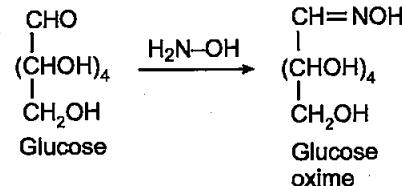
Write the reactions involved when D-glucose is treated with the following reagents :

- $\text{Br}_2$  water
- $\text{H}_2\text{N}-\text{OH}$
- $(\text{CH}_3\text{CO})_2\text{O}$

**Answer :** (i) **Oligosaccharide** : Carbohydrates that yield two to ten monosaccharide units on hydrolysis are known as oligosaccharides. They are further classified as disaccharides, trisaccharides, tetrasaccharides etc., depending upon the number of monosaccharides they provide upon hydrolysis. Disaccharides are the most common, e.g., maltose.


(ii) **Denaturation of protein** : Protein found in a biological system with a unique three-dimensional structure and biological activity is called a native protein. When a native protein is subjected to physical change like temperature, chemical or pH change, the

hydrogen bonds within the protein structure are disturbed causing globules to unfold and  $\alpha$ -helix to uncoiled. The secondary and tertiary structures of protein molecule is destroyed, in turn losing their biological activity, this is known as denaturation of protein. Example is coagulation of egg white on boiling.


(iii) **Vitamins** : These are the organic compounds required in the diet in small amounts to perform specific biological functions for normal maintenance of optimum growth and health of organisms. Example – Vitamins A, B, C, D etc.

OR


(i) Reaction of glucose with  $\text{Br}_2$  water (a mild oxidising agent) gives gluconic acid, this reaction indicates that carbonyl group of glucose is an aldehydic group :



(ii) Reaction of glucose with  $\text{H}_2\text{N}-\text{OH}$  (hydroxylamine) gives oxime, this reaction confirms that there is a carbonyl group present in glucose :



(iii) Reaction of glucose with  $(\text{CH}_3\text{CO})_2\text{O}$  (acetic anhydride) gives glucose pentaacetate, this reaction confirms that there are five hydroxyl groups present in glucose :



••

Students don't need to purchase any Guide, Question Bank or Sample/model paper from market. All material will be available on this website in the form of free PDFs by 30 September. On website [www.cbsepdf.com](http://www.cbsepdf.com) following materials will be provided :

1. NCERT Solutions
2. Previous Years Papers (2011-2019)
3. Previous Years Chapterwise Question Bank
4. 20 Solved Sample Paper

Students can download from following website

**[www.cbsepdf.com](http://www.cbsepdf.com)**

A mission for free content for all.