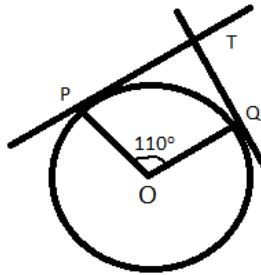


## Class - X

## Mathematics-Basic (241)

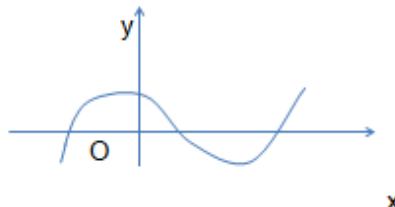
**Sample Question Paper 2019-20**

**Max. Marks: 80**


**Duration: 3 hrs.**

### ***General Instructions:***

- a) All questions are compulsory
- b) The question paper consists of 40 questions divided into four sections A, B, C & D.
- c) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises 6 questions of 4 marks each.
- d) There is no overall choice. However internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- e) Use of calculators is not permitted.


## **SECTION - A**

Q 1- 10 are multiple choice questions. Select the most appropriate answer from the given options.

|    |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | <p>(a) <math>2 \text{ Mean} = 3 \text{ Median} - \text{Mode}</math><br/> <math>\text{Median} - \text{Mean}</math></p> <p>(c) <math>\text{Mode} = 2 \text{ Mean} - 3 \text{ Median}</math><br/> <math>\text{Mode} + \text{Mean}</math></p>                                                                  | <p>(b) <math>2 \text{ Mode} = 3</math><br/> <math>\text{Median} - \text{Mean}</math></p> <p>(d) <math>3 \text{ Median} = 2</math><br/> <math>\text{Mode} + \text{Mean}</math></p> |   |
|    |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |   |
| 3. | <p>In the given figure, if TP and TQ are tangents to a circle with centre O, so that <math>\angle \text{POQ} = 110^\circ</math>, then <math>\angle \text{PTQ}</math> is</p> <p>(a) <math>110^\circ</math><br/> (b) <math>90^\circ</math><br/> (c) <math>80^\circ</math><br/> (d) <math>70^\circ</math></p> |                                                                                                 | 1 |
| 4. | <p>325 can be expressed as a product of its primes as</p> <p>(a) <math>5^2 \times 7</math><br/> (b) <math>5^2 \times 13</math><br/> (c) <math>5 \times 13^2</math><br/> (d) <math>2 \times 3^2 \times 5^2</math></p>                                                                                       |                                                                                                                                                                                   | 1 |
|    |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |   |
| 5. | <p>One card is drawn from a well shuffled deck of 52 cards. The probability that it is black queen is</p> <p>(a) <math>\frac{1}{26}</math><br/> (b) <math>\frac{1}{13}</math><br/> (c) <math>\frac{1}{52}</math><br/> (d) <math>\frac{2}{13}</math></p>                                                    |                                                                                                                                                                                   | 1 |
|    |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |   |
| 6. | <p>The sum of the zeroes of the polynomial <math>2x^2 - 8x + 6</math> is</p> <p>(a) - 3<br/> (b) 3<br/> (c) - 4<br/> (d) 4</p>                                                                                                                                                                             |                                                                                                                                                                                   | 1 |
|    |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |   |
| 7. | <p>Which of the following is the decimal expansion of an irrational number</p> <p>(a) 4.561<br/> (b) <math>0.\overline{12}</math><br/> (c) 5.010010001...<br/> (d) 6.03</p>                                                                                                                                |                                                                                                                                                                                   | 1 |
|    |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |   |

8. The following figure shows the graph of  $y = p(x)$ , where  $p(x)$  is a polynomial in variable  $x$ . The number of zeroes of the polynomial  $p(x)$  is **1**

(a) 1      (b) 2      (c) 3      (d) 4



9. The distance of the point  $P (3, -4)$  from the origin is **1**

(a) 7 units      (b) 5 units      (c) 4 units  
(d) 3 units

10. The mid point of the line segment joining the points  $(-5, 7)$  and  $(-1, 3)$  is **1**

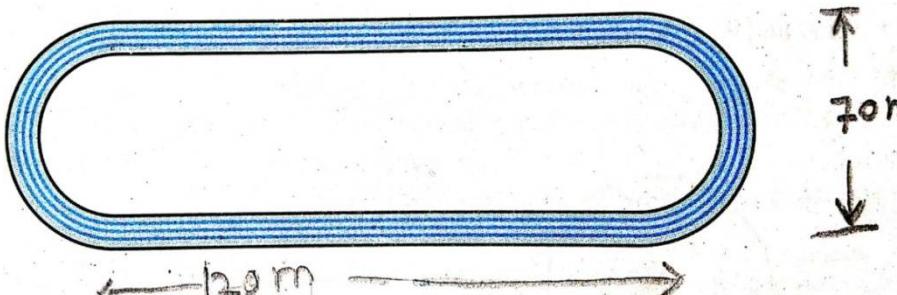
(a)  $(-3, 7)$       (b)  $(-3, 5)$       (c)  $(-1, 5)$   
(d)  $(5, -3)$

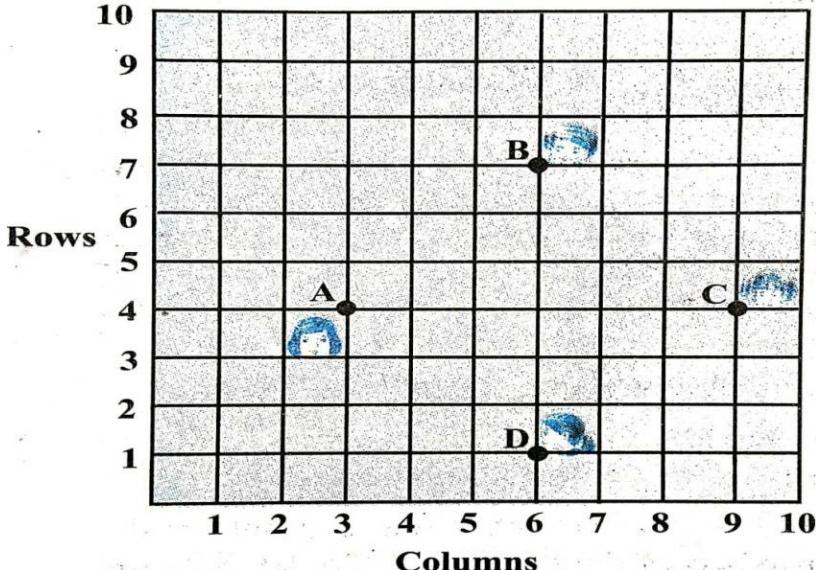
**(11 - 15) Fill in the blanks:**

11. The point which divides the line segment joining the points  $A (0, 5)$  and  $B (5, 0)$  internally in the ratio 2:3 is \_\_\_\_\_ **1**


12. The pair of lines represented by the equations  $2x+y+3 = 0$  and  $4x+ky+6 = 0$  will be parallel if value of  $k$  is \_\_\_\_\_. **1**

**OR**


If the quadratic equation  $x^2 - 2x + k = 0$  has equal roots, then value of  $k$


|     |                                                                                                                   |   |
|-----|-------------------------------------------------------------------------------------------------------------------|---|
|     | is _____.                                                                                                         |   |
|     |                                                                                                                   |   |
| 13. | The value of $\sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ$ is _____.                                | 1 |
|     |                                                                                                                   |   |
| 14. | Value of $\cos 0^\circ \cdot \cos 30^\circ \cdot \cos 45^\circ \cdot \cos 60^\circ \cdot \cos 90^\circ$ is _____. | 1 |
|     |                                                                                                                   |   |
| 15. | The sides of two similar triangles are in the ratio 2:3, then the areas of these triangles are in the ratio _____ |   |
|     |                                                                                                                   |   |

(16 - 20) Answer the following :

|     |                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 16. | $\triangle PQR$ is right angled isosceles triangle, right angled at R. Find value of $\sin P$ .                                                                                                                                                                                                                                                                                                          | 1 |
|     | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                |   |
|     | If $15 \cot A = 8$ , then find value of $\operatorname{cosec} A$ .                                                                                                                                                                                                                                                                                                                                       |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 17. | If area of quadrant of a circle is $38.5 \text{ cm}^2$ then find its diameter<br>(use $\pi = \frac{22}{7}$ )                                                                                                                                                                                                                                                                                             | 1 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 18. | A dice is thrown once. Find the probability of getting a prime number.                                                                                                                                                                                                                                                                                                                                   | 1 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 19. | In the given fig. If $DE \parallel BC$ Find EC.                                                                                                                                                                                                                                                                                                                                                          | 1 |
|     |  <p>Diagram: A triangle ABC is shown. A horizontal line DE is drawn through the triangle, parallel to the base BC. The line DE intersects the base BC at point E and the side AB at point D. The length of AD is labeled as 1.5 cm, and the length of AE is labeled as 1 cm. The length of AB is labeled as 3 cm.</p> |   |



|     |                                                                                                                                                                                                                                                                                                                                                                                       |               |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
|     | 5. $x^2 - 2x + 1$<br><br>(i) How many students wrote cubic polynomial<br>(ii) Divide the polynomial $(x^2 + 2x + 1)$ by $(x + 1)$ .                                                                                                                                                                                                                                                   | 10. $x^4 - 1$ |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                       |               |  |
|     | <b>SECTION C</b>                                                                                                                                                                                                                                                                                                                                                                      |               |  |
| 27. | Find the zeroes of the quadratic polynomial $x^2 - 3x - 10$ and verify the relationship between the zeroes and coefficient.                                                                                                                                                                                                                                                           | 3             |  |
| 28. | Draw a circle of radius 4 cm. From the point 7 cm away from its centre, construct the pair of tangents to the circle.<br><br><b>OR</b><br><br>Draw a line segment of length 8 cm and divide it in the ratio 2:3                                                                                                                                                                       | 3             |  |
| 29. | Following figure depicts a park where two opposite sides are parallel and left and right ends are semi-circular in shape. It has a 7m wide track for walking<br><br><br><br>Two friends Seema and Meena went to the park. Meena said that area of the track is $4066m^2$ . Is she right? Explain. | 3             |  |
| 30. | Prove that $\frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\operatorname{cosec} A - 1}{\operatorname{cosec} A + 1}$<br><br><b>OR</b><br><br>Prove that: $\frac{\tan A + \sin A}{\tan A - \sin A} = \frac{\sec A + 1}{\sec A - 1}$                                                                                                                                                    | 3             |  |

|     |                                                                                                                                                                                                                                                                                                                                     |                            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|     |                                                                                                                                                                                                                                                                                                                                     |                            |
| 31. | Prove that $5 - \sqrt{3}$ is irrational, given that $\sqrt{3}$ is irrational.                                                                                                                                                                                                                                                       | 3                          |
|     | <b>OR</b>                                                                                                                                                                                                                                                                                                                           |                            |
|     | An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march ?                                                                                                             |                            |
| 32. | Prove that the lengths of tangents drawn from an external point to a circle are equal.                                                                                                                                                                                                                                              | 3                          |
| 33. | <p>Read the following passage and answer the questions that follows:</p> <p>In a class room, four students Sita, Gita, Rita and Anita are sitting at A(3,4), B(6,7), C(9,4), D(6,1) respectively. Then a new student Anjali joins the class</p>  | 3                          |
|     | <p>(i) Teacher tells Anjali to sit in the middle of the four students. Find the coordinates of the position where she can sit.</p> <p>(ii) Calculate the distance between Sita and Anita.</p> <p>(iii) Which two students are equidistant from Gita.</p>                                                                            | <p>1</p> <p>1</p> <p>1</p> |

|     |                                                                                                                                                                                                                                                                                                                                         |   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     |                                                                                                                                                                                                                                                                                                                                         |   |
| 34. | Solve $2x + 3y = 11$ and $x - 2y = -12$ algebraically and hence find the value of 'm' for which $y = mx + 3$ .                                                                                                                                                                                                                          | 3 |
|     | <b>SECTION D</b>                                                                                                                                                                                                                                                                                                                        |   |
| 35. | Find two consecutive positive integers sum of whose squares is 365.                                                                                                                                                                                                                                                                     | 4 |
|     |                                                                                                                                                                                                                                                                                                                                         |   |
| 36. | If the sum of first 14 terms of an A.P. is 1050 and its first term is 10, find the 20 <sup>th</sup> term.                                                                                                                                                                                                                               | 4 |
|     | <b>OR</b>                                                                                                                                                                                                                                                                                                                               |   |
|     | The first term of an A.P. is 5, the last term is 45 and sum is 400. Find the number of terms and the common difference.                                                                                                                                                                                                                 |   |
|     |                                                                                                                                                                                                                                                                                                                                         |   |
| 37. | As observed from the top of a 75m high light house above the sea level, the angles of depression of two ships are $30^\circ$ and $45^\circ$ respectively. If one ship is exactly behind the other on the same side of the light house and in the same straight line, find the distance between the two ships. (use $\sqrt{3} = 1.732$ ) | 4 |
|     |                                                                                                                                                                                                                                                                                                                                         |   |
| 38. | If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then prove that the other two sides are divided in the same ratio.                                                                                                                                                           | 4 |
|     | <b>OR</b>                                                                                                                                                                                                                                                                                                                               |   |
|     | State and prove the Pythagoras theorem.                                                                                                                                                                                                                                                                                                 |   |
|     |                                                                                                                                                                                                                                                                                                                                         |   |
| 39. | A copper rod of diameter 1 cm and length 8 cm is drawn in to a wire of length 18 m of uniform thickness. Find the thickness of wire.                                                                                                                                                                                                    | 4 |
|     | <b>Or</b>                                                                                                                                                                                                                                                                                                                               |   |

|                   | A metallic sphere of radius 4.2 cm is melted and recast into the shape of a cylinder of radius 6 cm. Find the height of the cylinder.                                                                                                                                                                                                                                                                                                                                                                |              |         |         |         |         |         |                   |    |    |   |   |    |   |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|---------|---------|---------|---------|-------------------|----|----|---|---|----|---|
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |         |         |         |         |         |                   |    |    |   |   |    |   |
| 40.               | <p>The following distribution gives the daily income of 50 workers of a factory</p> <table border="1" data-bbox="383 496 1362 686"> <thead> <tr> <th>Daily income</th><th>400-420</th><th>420-440</th><th>440-460</th><th>460-480</th><th>480-500</th></tr> </thead> <tbody> <tr> <th>Number of workers</th><td>12</td><td>14</td><td>8</td><td>6</td><td>10</td></tr> </tbody> </table> <p>Convert this distribution to less than type of cumulative frequency distribution and draw its ogive.</p> | Daily income | 400-420 | 420-440 | 440-460 | 460-480 | 480-500 | Number of workers | 12 | 14 | 8 | 6 | 10 | 4 |
| Daily income      | 400-420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 420-440      | 440-460 | 460-480 | 480-500 |         |         |                   |    |    |   |   |    |   |
| Number of workers | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14           | 8       | 6       | 10      |         |         |                   |    |    |   |   |    |   |

Class - X

Mathematics-Basic (241)

Marking Scheme-SQP 2019-20

Max. Marks: 80

Duration: 3 hrs.

|     |                              |     |
|-----|------------------------------|-----|
| 1.  | (b) 42                       | (1) |
|     |                              |     |
| 2.  | (a) 2 Mean = 3 Median - Mode | (1) |
|     |                              |     |
| 3.  | (d) $70^\circ$               | (1) |
|     |                              |     |
| 4.  | (b) $5^2 \times 13$          | (1) |
|     |                              |     |
| 5.  | (a) $\frac{1}{26}$           | (1) |
|     |                              |     |
| 6.  | (d) 4                        | (1) |
|     |                              |     |
| 7.  | (c) 5.010010001...           | (1) |
|     |                              |     |
| 8.  | (c) 3                        | (1) |
|     |                              |     |
| 9.  | (b) 5 units                  | (1) |
|     |                              |     |
| 10. | (b) (- 3, 5)                 | (1) |
|     |                              |     |
| 11. | (2, 3)                       | (1) |
|     |                              |     |
| 12. | 2 OR 1                       | (1) |
|     |                              |     |
| 13. | 1                            | (1) |
|     |                              |     |
| 14. | 0                            | (1) |
|     |                              |     |
| 15. | 4:9                          | (1) |
|     |                              |     |
| 16. | $\sin P = 1/\sqrt{2}$        | (1) |

OR

$$\operatorname{cosec} A = 17/15$$

17. Area of quadrant =  $\frac{1}{4} \times \frac{22}{7} \times r^2 = 38.5$  (use  $\pi = \frac{22}{7}$ ) (1/2)

$$\Rightarrow r = 7\text{cm}$$

$$\therefore \text{diameter} = 14 \text{ cm}$$
(1/2)

18.  $\frac{1}{2}$  1

19.  $\frac{AD}{BD} = \frac{AE}{EC}$  (By B.P.T.) (1/2)

$$\frac{1.5}{3} = \frac{1}{EC}$$

$$\therefore EC = 2 \text{ cm}$$
(1/2)

20.  $A_5 = a_1 + 4d = 0$  (1/2)

$$1^2 + 4d = 0$$

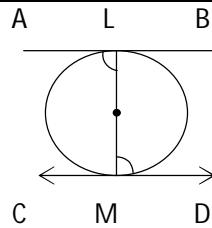
$$d = -3$$
(1/2)

**SECTION - B**

21.  $P(\text{Two Head}) = \frac{1}{4}$  (1)  
(1)

22. Good bulbs =  $25 - 5 = 20$  (1)  
 $P(\text{good bulb}) = \frac{20}{25} = \frac{4}{5}$  (1)

OR


Of all those outcomes, the ones for which  $a + b = 8$  are:

$2+6, 3+5, 4+4, 5+3, 6+2$  or 5 outcomes.

(1)

$$P = 5/36$$
(1)

23.



(1)

$$\angle OLA = 90^\circ$$

$$\angle OMD = 90^\circ$$

$$\angle OLA = \angle OMD$$

Which are alternate angles, hence  $AB \parallel CD$

(1)

24.

$$\text{LHS} = \tan 48^\circ \tan 23^\circ \tan 42^\circ \tan 67^\circ$$

(1)

$$= \cot (90^\circ - 48^\circ) \cot (90^\circ - 23^\circ) \tan 42^\circ \tan 67^\circ$$

(1)

$$= \cot 42^\circ \cot 67^\circ \tan 42^\circ \tan 67^\circ$$

$$= 1$$

OR

$$= \cos 48^\circ \cos 42^\circ - \sin 48^\circ \sin 42^\circ$$

(1)

$$= \sin (90^\circ - 48^\circ) \sin (90^\circ - 42^\circ) - \sin 48^\circ \sin 42^\circ$$

(1)

$$= \sin 42^\circ \sin 48^\circ - \sin 48^\circ \sin 42^\circ = 0$$

(1)

25.

$$r = \frac{7}{2}$$

(1)

$$\text{Area of Circle} = \frac{\pi r^2}{4} = \frac{77}{2} \text{ cm}^2$$

(1)

26.

(i) 3 Students

$$\text{(ii)} \quad \frac{x^2 + 2x + 1}{x + 1}$$

(1)

$$= \frac{(x+1)^2}{x+1} = x + 1$$

(1)

### SECTION - C

|     |                                                                                                                                                                                                                                                                                                                        |                      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 27. | $x^2 - 3x - 10 = 0$ $x^2 - 5x + 2x - 10 = 0$ $x(x-5) + 2(x-5) = 0$ $(x-5)(x+2) = 0$ $x = 5, -2$<br>$\text{Sum of the roots} = \frac{-b}{a} = \frac{3}{1}$ $\text{which is same as } 5 - 2 = 3$ $\text{product of the roots} = \frac{c}{a} = -10$ $\text{which is same as } 5 \times (-2) = -10$ <p>Hence verified</p>  | (3)                  |
| 28. | <p>Correct construction of given circle (1)<br/>     Correct construction of two tangents (2)</p> <p>OR</p> <p>Line of given length (1)<br/>     Correct position of point which divides the line segment in the given ratio (2)</p>                                                                                   |                      |
| 29. | $\text{Area of track} = 120 \times 70 + [(35)^2 - (120 \times 56 + (28)^2)]$ $= 120 \times 14 + \frac{22}{7} [(35)^2 - (28)^2]$ $= 1680 + \frac{22}{7} \times 7 \times 63$ $= 1680 + 1386$ $= 3066 \text{ m}^2$                                                                                                        | (1) $(1\frac{1}{2})$ |
|     | Yes, Meena is wrong. $(\frac{1}{2})$                                                                                                                                                                                                                                                                                   |                      |
| 30. | $\text{L.H.S.} = \frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\frac{\cos A}{\sin A} - \cos A}{\frac{\cos A}{\sin A} + \cos A}$ $= \frac{\cos A (\frac{1}{\sin A} - 1)}{\cos A (\frac{1}{\sin A} + 1)} = \frac{(\frac{1}{\sin A} - 1)}{(\frac{1}{\sin A} + 1)}$ $= \frac{\cosec A - 1}{\cosec A + 1} = \text{R.H.S}$ | (1) (1)              |

**OR**

$$\begin{aligned}
 \text{L.H.S.} &= \frac{\tan A + \sin A}{\tan A - \sin A} & (1) \\
 &= \frac{\frac{\sin A}{\cos A} + \sin A}{\frac{\sin A}{\cos A} - \cos A} = \frac{\sin A}{\sin A} \frac{[\sec A + 1]}{[\sec A - 1]} & \left(\frac{1}{2}\right) \\
 &= \text{R.H.S} & (1) \\
 & & (1)
 \end{aligned}$$

31. Let us assume that  $5 - \sqrt{3}$  is a rational

We can find co prime a & b ( $b \neq 0$ ) such that

$$5 - \sqrt{3} = \frac{a}{b}$$

Therefore  $5 - \frac{a}{b} = \sqrt{3}$

So we get  $\frac{5b-a}{b} = \sqrt{3}$

Since a & b are integers, we get  $\frac{5b-a}{b}$  is rational, and so  $\sqrt{3}$  is rational. But  $\sqrt{3}$  is an irrational number

Which contradicts our statement

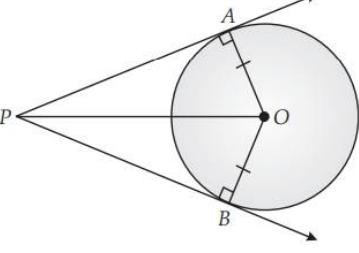
$\therefore 5 - \sqrt{3}$  is irrational

**OR**

$$616 = 32 \times 19 + 8$$

$$\Rightarrow r = 8 \neq 0$$

$$32 = 8 \times 4 + 0$$


$$\Rightarrow r = 0$$

(2)

The HCF of 32 and 616 is 8.

(1)

32. (1)

|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                    |  <p>In <math>\triangle OPA</math> and <math>\triangle OPB</math><br/> <math>\angle PAO = \angle PBO</math> (each <math>90^\circ</math>)<br/> <math>OP = OP</math> (common)<br/> <math>OA = OB</math> (radii of same circle)<br/> <math>\triangle OPA \cong \triangle OPB</math> (by RHS congruency axiom)<br/> Hence <math>PA = PB</math> (CPCT)</p>                                                                                                                                                                               | (1)<br>(1)        |
| 33.                | <p>(i) (6,4)</p> <p>(ii) <math>\sqrt{(6-3)^2 + (1-4)^2} = 3\sqrt{2}</math> units</p> <p>(iii) Sita and Rita</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1)<br>(1)<br>(1) |
| 34.                | <p><math>2x + 3y = 11</math> ----(1)</p> <p><math>x - 2y = -12</math> ----(2)</p> <p>(2) <math>\Rightarrow x = 2y - 12</math> ----(3)</p> <p>Substitute value of x from (3) in (1), we get</p> $2(2y - 12) + 3y = 11$ $\Rightarrow 4y - 24 + 3y = 11$ $\Rightarrow 7y = 35$ $\Rightarrow y = 5$ <p>Substituting value of <math>y = 5</math> in equation (3), we get</p> $x = 2(5) - 12 = 10 - 12 = -2$ <p>Hence <math>x = -2, y = 5</math> is the required solution</p> <p>Now <math>5 = -2m + 3</math><br/> <math>\Rightarrow 2m = 3 - 5</math><br/> <math>\Rightarrow 2m = -2</math><br/> <math>m = -1</math></p> | (1)<br>(1)        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1)               |
| <b>SECTION - D</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| 35.                | Let two consecutive positive integers be $x$ and $x + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(\frac{1}{2})$   |

|     |                                                                                                                                                                            |                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|     | $\therefore x^2 + (x + 1)^2 = 365$ $\Rightarrow x^2 + x - 182 = 0$ $(x + 14)(x - 13) = 0$ $\therefore x = 13$ <p>Hence two consecutive positive integers are 13 and 14</p> | (1 $\frac{1}{2}$ )<br>(1)<br>(1) |
|     |                                                                                                                                                                            |                                  |
| 36. | <p>Let common difference be <math>d</math></p> $\Rightarrow \frac{14}{2}[2(10) + (n - 1)d] = 1050$ $\Rightarrow d = 10$ $a_{20} = a + 19 d$ $= 10 + 19 (10) = 200$         | (2)<br>(2)                       |

**OR**

$$a=5$$

$$a_n = 45$$

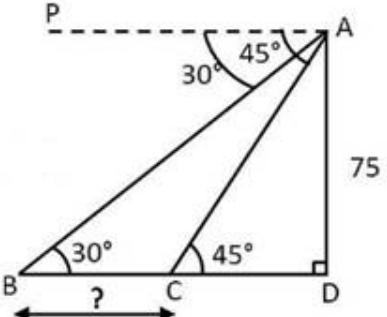
$$S_n = 400$$

$$\Rightarrow \frac{n}{2} (5+45) = 400$$

$$50n = 800$$

$$n = 16$$

(2)


$$\text{also } a_n = 45$$

$$5+15d = 45$$

$$15d=40$$

$$d=8/3$$

(2)

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |
| 37. |                                                                                                                                                                                                                                                                                                                                                   | (1)                                                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1)                                                                        |
| 38. | <p>For correct fig</p> <p><math>\tan 45^\circ = \frac{75}{CD}</math></p> <p><math>1 = \frac{75}{CD} \Rightarrow CD = 75</math></p> <p><math>\tan 30^\circ = \frac{75}{BD}</math></p> <p><math>\frac{1}{\sqrt{3}} = \frac{75}{BD}</math></p> <p><math>\Rightarrow BD = 75\sqrt{3}</math></p> <p><math>\Rightarrow \text{Distance between two ships} = BC = 75(\sqrt{3} - 1)\text{m}</math></p> <p><math>= 54.9 \text{ m}</math></p> | (1)                                                                        |
| 38. | <p>For correct, Given, To prove, construction and Figure</p> <p>For correct proof</p> <p><b>OR</b></p> <p>For correct statement, Given, To prove, Construction and Figure</p>                                                                                                                                                                                                                                                      | $(4 \times \frac{1}{2} = 2)$ $(2)$ $(5 \times \frac{1}{2} = 2\frac{1}{2})$ |

|              | For correct proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1½)                 |                   |                      |         |    |    |         |    |    |         |   |    |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|----------------------|---------|----|----|---------|----|----|---------|---|----|--|
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                   |                      |         |    |    |         |    |    |         |   |    |  |
| 39.          | A.T. Q.<br>$\pi r^2 \times 1800 = \pi \times \frac{1}{2} \times \frac{1}{2} \times 8$ $\Rightarrow r^2 = \frac{1}{900}$ $\Rightarrow r = \frac{1}{30}$ $\therefore \text{Thickness of wire} = \frac{1}{15} \text{ cm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2)<br>(1½)<br>(½)   |                   |                      |         |    |    |         |    |    |         |   |    |  |
|              | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                   |                      |         |    |    |         |    |    |         |   |    |  |
|              | $\frac{4}{3} \pi r^3 = \pi R^2 h$ $\frac{4}{3} (4.2)^3 = (6)^2 h$ $\Rightarrow h = \frac{2744}{100}$ $\therefore h = 27.44 \text{ cm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2)<br>(1½)<br>(½)   |                   |                      |         |    |    |         |    |    |         |   |    |  |
| 40.          | <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Daily Income</th> <th style="text-align: center;">Number of workers</th> <th style="text-align: center;">Cumulative Frequency</th> </tr> </thead> <tbody> <tr> <td style="text-align: center;">400-420</td> <td style="text-align: center;">12</td> <td style="text-align: center;">12</td> </tr> <tr> <td style="text-align: center;">420-440</td> <td style="text-align: center;">14</td> <td style="text-align: center;">26</td> </tr> <tr> <td style="text-align: center;">440-460</td> <td style="text-align: center;">8</td> <td style="text-align: center;">34</td> </tr> </tbody> </table> | Daily Income         | Number of workers | Cumulative Frequency | 400-420 | 12 | 12 | 420-440 | 14 | 26 | 440-460 | 8 | 34 |  |
| Daily Income | Number of workers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cumulative Frequency |                   |                      |         |    |    |         |    |    |         |   |    |  |
| 400-420      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                   |                   |                      |         |    |    |         |    |    |         |   |    |  |
| 420-440      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                   |                   |                      |         |    |    |         |    |    |         |   |    |  |
| 440-460      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34                   |                   |                      |         |    |    |         |    |    |         |   |    |  |

|  |         |    |    |  |     |
|--|---------|----|----|--|-----|
|  |         |    |    |  |     |
|  | 460-480 | 6  | 40 |  | (2) |
|  | 480-500 | 10 | 50 |  | (2) |

Correct Table  
Drawing an ogive with co-ordinates  
(420,12), (440,26), (460,34), (480,40), (500,50)